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Chapter 1

Introduction

Moving vehicles, such as submarines and airplanes, are surrounded by
a thin boundary layer in which the relative fluid velocity drops rapidly
to zero close to the solid walls of the vehicle. Inside this boundary
layer viscous effects play an important role, whereas the flow outside
the boundary layer is convection dominated. Depending on a number
of parameters, such as the shape and the velocity of the vehicle, this
boundary layer can develop along the surface downstream in various
ways. At sufficiently low velocity a laminar flow may occur whereas
the initially laminar boundary layer can become unstable if the velocity
is high enough. In that case the boundary layer can go through tran-
sition and develop into a sustained turbulent flow which shows strong
spatial and temporal variation. In figure 1-1 a sketch of such an un-
stable boundary-layer flow is shown. The transition of boundary layers

Figure 1-1: Boundary-layer flow around an airfoil. Sketch of
transition to turbulence downstream.
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from laminar into turbulent flow is an interesting, central, phenomenon,
which has been reported in many studies in the literature over several
decades. Moreover, a strong international interest in problems of sta-
bility and transition of wall-bounded shear layers exists in connection
with the design of many transport vehicles. In particular the stability
and transition in attachment-line boundary-layer flow which forms e.g.
near the leading edge of a wing or rotor blade, is the central theme
of this thesis. Such a line is formed on the windward surface of any
cylindrically shaped object immersed in fluid flow.

As pointed out in a review by Reed et al. (1996) understanding tran-
sition is necessary for the accurate prediction of hydro- and aerodynamic
forces and temperatures on the surface of transport vehicles in general.
The partial control of the transition process can be used in several ways.
Delaying transition, for instance by applying suction through the sur-
face, generally results in lower drag and therefore higher fuel efficiency.
On the other hand, favoring transition can postpone separation of flow
around a swept wing and prevent stall, see Wasistho (1997). Thus, un-
derstanding and predicting the stability and transition of wall-bounded
shear flows is crucial for increasing the safety and fuel efficiency of for
instance airplanes.

The transition to turbulence of many fluid flows is triggered by the
growth of very small disturbances originating from an upstream loca-
tion. Disturbances in the freestream, such as sound, enter the bound-
ary layer. At certain conditions of amplitude, frequency, phase and
free-stream velocity, these disturbances can grow, typically at an ex-
ponential rate, such that further downstream nonlinear interaction can
cause the resulting flow to become turbulent. This process is called
recepticity. It was studied by many authors for a number of flow ge-
ometries, see Kleiser and Zang (1991) for a review. In this thesis these
stability characteristics are studied for flow near the leading edge of e.g.
a wing.

The global setting of the subject matter of this thesis is described in
more detail in this chapter. In § 1.1 a description of the attachment-line
boundary layer is given. In § 1.2 a short review of the research on the
stability of the attachment-line boundary layer is given. Finally in § 1.3
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an outline is provided of the remaining chapters.

1.1 The attachment-line boundary layer

The instability of flow near the leading edge of e.g. a swept wing is of
great practical importance. This kind of instability may lead to grow-
ing disturbances which can be convected downstream and thus influence
the transition from laminar to turbulent flow around the wing. Thereby
they influence its aerodynamic properties to a large extent.
The attachment-line region consists of the front part of that wing. In
figure 1-2 this region is shown schematically and we also define the co-
ordinate directions. The far-field flow Q is at an angle with respect to
the leading edge which is dotted. As shown X denotes the chordwise

Y

Q

X

Z

Figure 1-2: Attachment-line geometry

direction, Y denotes the direction normal to the wall and Z denotes
the spanwise direction. Boundary layers exist for all three velocity com-
ponents which motivates the use of models based on boundary-layer
theory for the mean flow. This is the first step in the computation of
the stability characteristics in the way described in chapter 2.
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As is well known, the characteristics of this flow are closely related
to the value of the Reynolds number and, to a lesser extent, the Mach
number. The Reynolds number is a measure for the ratio between the
convective and the viscous terms in the Navier–Stokes equations. It
is based on a typical length scale and a typical velocity of the free-
stream. For this length scale l the profile’s chord-length is taken and
for the reference velocity the spanwise velocity W∞ in the free-stream is
used. Thus the characteristic Reynolds number is Re∞ = ρ∞W∞l/µ∞
where ρ∞ denotes the density and µ∞ the viscosity in the free stream.
The Mach number is related to W∞ and to the speed of sound. It is
defined as M = W∞/

√
γRT∞, where γ is the ratio of specific heats,

R the gas constant and T∞ the temperature in the free stream. In all
cases of practical interest considered here, Re∞ is sufficiently large so
that viscous effects can be neglected apart from narrow layers near the
surface of the body. All quantities are used only in their dimensionless
form, for which purpose the spatial dimensions may be scaled by the
characteristic length l, the density and the viscosity by their free-stream
values, the velocity components by W∞, the pressure by ρ∞W

2
∞, and

the temperature by the free-stream temperature T∞.

However, the region of our interest is actually the boundary layer at
the attachment line. The analysis of the stability characteristics of the
mean flow near the attachment-line will be restricted to this slender re-
gion of width over the solid surface. Therefore the use of boundary-layer
thickness for scaling lengths seems to be more appropiate for the prob-
lems of our interest. Moreover, a length scale based on boundary-layer
thickness leads to better conditioned numerical models for the study
of the attachment-line boundary layer with lower Reynolds numbers.
The thickness of the viscous flow zone at the attachment line is of the
order of ∆ = (µ∞/(ρ∞dU∞/dX))1/2 , where U∞ is the velocity in the
X-direction in the free stream. A similar, but not identical, definition
of ∆ has been used by for example Kazakov (1990). Since ∆� l in the
cases of interest a second Reynolds number is more appropiately defined
as R = ρ∞W∞∆/µ∞. The parameter ∆ is used as the appropiate scale
in the boundary layer for the coordinates X, Y , and Z, see for instance
Lin and Malik (1996). Thus, the coordinates X, Y , and Z are scaled
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with the parameter ∆, which defines new dimensionless coordinates x,
y and z as

x = X/∆, y = Y/∆, z = Z/∆. (1-1)

Apart from the geometry of the flow, the resulting base flow forms a
central quantity determining the stability characteristics of the bound-
ary layer. For the incompressible attachment-line flow the base flow is
the famous Hiemenz flow and has the following form, see for instance
Lin and Malik (1996)

U = U0(x, y)/R = xU1(y), V = V0(y)/R, W = W0(y), (1-2)

where U1, V0 and W0 are the similarity velocity functions. After substi-
tuting the above functional form for the base flow into the Navier–Stokes
equations a coupled system of ordinary differential equations (ODE’s)
can be derived for the three velocities U1, V0 and W0. The solution
of this system of ODE’s gives an exact solution of the Navier–Stokes
equations for three-dimensional incompressible flow impinging on a flat
plate. An assumption similar to (1-2) can be made for compressible
flow as well, resulting in a system of ODE’s which yields an approxi-
mate solution for the base flow. In fact, the solution of this system of
ODE’s represents the leading order term in a Reynolds number expan-
sion within the boundary layer. In both cases curvature effects are not
included. For the treatment of curvature effects in the incompressible
case, see Lin and Malik (1997).

1.2 Historical sketch of attachment-line in-
stability research

As a consequence of the theoretical and practical importance of flow
near the leading edge of a wing a considerable effort has been put
into the computation of the stability characteristics of attachment-line
flow. For instance Hall et al. (1984) and Theofilis (1995) were among
the first researchers who studied the linear stability of the incompress-
ible attachment-line boundary layer. In the latter reference the lin-
ear stability of the incompressible attachment-line boundary layer was
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studied in the spatial setting instead of the more common temporal
setting. This allows direct comparisons with experiments such as re-
ported by Poll (1979) and Juillen and Arnal (1995). Hall et al. (1984)
and Theofilis (1995) computed perturbations around the incompress-
ible Hiemenz flow as base flow. In addition, they adopted a similarity
model for the perturbations in the x-direction, such that the perturba-
tion eigensolution could be computed using a one-dimensional mathe-
matical model. Spalart (1988) was the first who performed temporal
nonlinear three-dimensional direct numerical simulations (DNS) for the
incompressible attachment-line boundary-layer flow. He considered a
number of simulations at Reynolds numbers near the critical Reynolds
number, as predicted by linear theory, in combination with small ran-
dom initial perturbations in order to stay in the linear regime. In this
way he obtained results which agree with the linear stability results
based upon the similarity model. In particular he showed that the shape
of the perturbations are conform with the similarity model. In further
direct numerical simulations Spalart (1990) studied crossflow instabil-
ity using a very large domain in the chordwise direction. Joslin (1995)
found similar results with his three-dimensional computations in the
spatial instead of the temporal setting.

While the computations of Spalart (1988) and Joslin (1995) justi-
fied the linear results obtained with the similarity model, experimen-
tal researchers such as Pfenniger and Bacon (1969) and Poll (1979) ob-
tained a much lower ‘global’ critical Reynolds number using pertur-
bations with considerably larger amplitudes. In fact they observed
Rcrit = 230–250 which is much smaller than the corresponding result
obtained with linear stability theory, Rcrit = 581.3. If sufficiently small
perturbations were used the experimental findings did recover the lin-
ear results. Other experimentalists such as Juillen and Arnal (1995)
confirmed the lower value of Rcrit which induced a search for theoret-
ical explanations for the experimentally obtained much lower global
critical Reynolds number. Hall and Malik (1986) considered nonlinear
two-dimensional simulations in which the behavior in the chordwise di-
rection was treated by the similarity model. They found subcritical
instability at R = 570 and wave amplitudes as large as 0.12, thus
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decreasing the gap between experiments and theory only marginally.
In the next 10 years there has been a dispute about the validity of
these results. The question was whether subcritical unstable modes
could be found with nonlinear two-dimensional simulations based on
the similarity model. Quite recently Theofilis (1998) repeated the cal-
culations of Hall and Malik (1986) using an extremely high resolution
as well as accurate discretization schemes. Despite the huge compu-
tational effort, no subcritically unstable modes were observed in these
two-dimensional simulations, which were also based on the similarity
model. Thus, another explanation for the experimentally observed in-
stability at low Reynolds number is needed. For example, it is likely
that subcritical instability is related to the three-dimensional nature of
the attachment-line flow combined with nonlinear interactions.

Lin and Malik (1996) stepped aside from the similarity model for
the perturbations and used the fully two-dimensional representation in
their linear stability calculations resulting in a very large eigenvalue
problem in two dimensions. Apart from the similarity mode, they ob-
served an underlying hierarchy of new symmetric and antisymmetric
two-dimensional modes. The existence of one of these modes was sub-
sequently confirmed in a direct numerical simulation by Joslin (1996).
The two-dimensional modes found by Lin and Malik (1996) are more
stable than the similarity mode, that is, in the spanwise direction their
growth is weaker than the growth of the similarity solution. However,
in the chordwise direction, i.e. away from the attachment line, the two-
dimensional modes show a more rapid growth than the similarity mode.
Therefore the two-dimensional modes could well be important in the
transition process over swept wings, for instance through nonlinear in-
teraction downstream from the attachment line. This may offer an
explanation for the experimentally observed instability found below the
critical Reynolds number of the similarity mode in this type of flow.
Lin and Malik (1997) extended their work by including curvature ef-
fects and found that curvature has a stabilizing influence.

Since most leading edge stability research is related to aeronautic ap-
plications knowledge about Mach-number effects is higly desired and is
one of the main issues in this work. Moreover, so far not much is known
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about the effect of compressibility on the stability of the attachment-line
boundary layer. Kazakov (1990) investigated the stability of the com-
pressible attachment-line boundary layer using the compressible equiv-
alent of the similarity model. Lasseigne et al. (1992) investigated tem-
perature and suction effects for a base flow which is an exact solution of
the Navier–Stokes equations in the limit M → 0. In this thesis the in-
compressible work of Lin and Malik (1996) is extended to the compress-
ible regime as well as to the spatial context. In this way an attempt is
made to narrow the gap between scientific interest and practical applica-
tions related to the design of airplanes. In addition an attempt is made
to assess the effect of nonlinearity on the stability of the attachment-
line boundary layer. For this purpose three-dimensional compressible
direct numerical simulations have been conducted. These simulations
are also meant to obtain insight in the experimentally observed transi-
tion to turbulence at Reynolds numbers well below the critical Reynolds
number as predicted by linear stability theory.

1.3 Outline of this thesis

In the next chapter the basic problem is defined in detail and several
methods are described for computing stability characteristics of the
attachment-line boundary layer. In chapter 3 the numerical methods
used for computing stability characteristics are described. In chapter 4
results on the spatial linear stability of the incompressible attachment-
line boundary layer are presented. In addition, in this chapter a vali-
dation study is performed comparing with results from the literature,
from which the accuracy of the numerical techniques developed can be
inferred. In chapter 5 the effect of compressibility on the linear sta-
bility of the attachment-line boundary layer is studied. Moreover, a
generalized similarity model is presented for the linear perturbations.
Using this similarity model the structure of the computed eigenvectors
is discussed. In chapter 6 the nonlinear evolution of the perturbations
is studied in the compressible case using direct numerical simulations.
Finally, in chapter 7, conclusions which relate to the current research
are drawn and suggestions for future research are made.



Chapter 2

Models for the stability of
the attachment line

As pointed out in chapter 1 predictions concerning the transition of flow
past an airfoil are important for the engineering of airplanes. These
predictions are strongly related to several parameters such as the Mach
number and the Reynolds number. Therefore tools are needed which
can be used in parameter studies of this problem. These tools can
roughly be divided into two classes, those based on linear models and
those based on nonlinear models. The tools based on linear models, for
instance linear stability theory, have the advantage of being cheap in
terms of computational effort which makes them especially suitable for
parameter studies. The tools based on nonlinear models, such as direct
numerical simulations, often have the advantage that the model used is
more general, but have the disadvantage of being much more expensive
in terms of computational effort.

In this chapter a short introduction to linear stability theory is given,
followed by a description of the linear stability problem in the context
of the attachment-line boundary layer. The various possibilities for
computing stability characteristics in the attachment-line context are
sketched and the approaches adopted in this work will be identified.
This chapter is concluded with the formulation of the nonlinear sta-
bility problem of the attachment-line flow for which direct numerical
simulations are used.

9
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2.1 Conventional formulation of linear sta-
bility theory

The basic idea behind stability analysis is to consider the evolution of
sufficiently small disturbances superimposed onto the local, undisturbed
boundary-layer base flow. One can then determine whether these per-
turbations grow or decay as function of time or spatial coordinates de-
pending on parameters associated with the flow such as the Reynolds
number, the frequency or the wave number of the disturbances. If all
possible perturbations decay for a certain set of parameters, then the
flow is called stable for these parameters. This basic idea will be illus-
trated by a simple example. Suppose the base flow has a structure given
by

U = U(y), V = 0, W = W (y), (2-1)

where Q = (U, V,W ) denote the velocities in the x-, y- and z-direction
respectively. Usually y is the coordinate in the direction normal to the
wall. The structure (2-1) forms for example a good model to describe
laminar flow over a flat plate. In this case the total flow is assumed to be
of the form Q = Q(y) + q(x, y, z, t), where q(x, y, z, t) is the perturba-
tion. The problem now is to find a way for representing and computing
these perturbations as a function of interesting physical parameters and
to find out whether the computed perturbations are stable or not. In
order to do so equations for these perturbations need to be derived, and
a solution method for the resulting equations has to be determined.

In order to derive equations for the perturbations, the total flow Q is
substituted into the Navier–Stokes equations. The resulting equations
which govern the perturbations can be further simplified by making the
approximation that products of disturbances are negligibly small, that
is, by linearizing the disturbance equations around the base flow Q. The
disturbance equations derived are linear in the perturbations and, in this
example, the coefficients are functions of y only. This suggests a solution
for q in terms of separation of variables using normal modes. Hence the
disturbance can be expressed in the form of a general travelling wave

q(x, y, z, t) = q̂(y) exp(i(αx+ βz − ωt)) + c.c., (2-2)
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where c.c. stands for complex conjugate and α, β, ω are quantities
of which two have to be specified in order to be able to compute the
remaining one as will be described below. With this assumption the
disturbance equations can be reduced to a one-dimensional form for
which efficient solution methods are available as will be explained.

Disturbances can have a spatial amplification, and a temporal am-
plification depending on the real and imaginary parts of α, β and ω.
In spatial theory ω is assumed to be real and known, while α and β

are assumed to be unknown and complex valued. The imaginary parts
of α and β form a measure for the growth of the computed perturba-
tions. In temporal theory α and β are assumed to be real and known
and ω is complex and unknown. In that case the imaginary part of ω,
I(ω), represents the temporal growth rate. After substituting (2-2) into
the disturbance equations a generalized eigenvalue problem is left to be
solved for q̂(y) with eigenvalue ω.

In the temporal case the eigenvalues ω can be directly computed in
the way sketched above. In the case of spatial stability a phase relation
between α and β has to be assumed in addition. Using such a relation
either α or β can be computed as eigenvalues from the disturbance equa-
tions corresponding to a given real value of ω. Usually a linear relation
between α and β is assumed, such as α = kβ and then a parameter study
can be performed for the ‘angle’ k between the wave vectors. Because of
the viscous terms in the Navier–Stokes equations the spatial eigenvalue,
i.e. α or β, appears quadratically whereas ω appears linearly in the dis-
turbance equations. Spatial stability is usually harder to compute than
temporal stability due to these quadratic terms. However, spatial theory
corresponds more closely to certain physical situations such as bound-
ary layers. In both cases the partial differential equations forming the
eigenvalue problem have to be discretized in space. In the case of a sin-
gle spatial dimension, y, a linear generalized matrix eigenvalue problem
of moderate size is obtained, which can be solved efficiently by a number
of methods of which the QZ-method, see Golub and Van Loan (1989),
is an important example.

In both spatial and temporal linear stability theory, there is a unique
value of the Reynolds number, Rcrit, below which the flow is stable. De-
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pending on the wave number or the frequency the flow can be unstable
above Rcrit. For instance in the case of temporal stability, contour plots
can be made of I(ω), with β against R given an assumption for the
phase relation between α and β. The contour line with I(ω) = 0 is
called the neutral curve. On this curve the disturbances do not grow or
decay in time according to linear stability theory. For instance in the
case of boundary-layer flow over a flat plate as well as attachment-line
flow the neutral curve typically looks like the one shown in figure 2-1.
As shown the flow is unstable in a limited but unbounded region in the

Unstable

Stable

crit

Stable

β

R
R

Figure 2-1: Typical shape of the neutral curve of boundary-
layer flow: flat plate, attachment line.

Rβ-plane.

2.2 Linear models for the stability of at-
tachment-line flow

In order to use linear stability theory in the attachment-line context
two different models are used in the literature. First, a model for the
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perturbations resulting in a one-dimensional eigenvalue problem will be
described. Then a more general model which will be used throughout
the rest of this thesis will be described.

It can be shown that the linearized incompressible Navier–Stokes
equations around the base flow (1-2) permit the same kind of x-depen-
dence for the perturbations, i.e.

u(x, y, z, t) = xû(y) exp(iβz − iωt) + c.c., (2-3a)

v(x, y, z, t) = v̂(y) exp(iβz − iωt) + c.c., (2-3b)

w(x, y, z, t) = ŵ(y) exp(iβz − iωt) + c.c. (2-3c)

Note that with this x-dependence for the perturbations there is no need
to introduce a parameter α as in (2-2). According to Lin and Ma-
lik (1996) and Theofilis (1998) the x-dependence in (2-3) was proposed
independently by Görtler and Hämmerlin in 1955, for which reason
(2-3) is also called the Görtler-Hämmerlin (GH) assumption. Equa-
tion (2-3) can be substituted into the linearized Navier–Stokes equa-
tions. The resulting equations for the perturbation eigenfunction form
a one-dimensional eigenvalue problem in ω or β which can be solved with
moderate computational effort. However, since (1-2) is a truly three-
dimensional base flow there is no physical justification for the special x-
dependence of the perturbations as in (2-3). Other perturbations with
arbitrary x-dependence may exist and be equally or even less stable.
Moreover, in a number of other situations the disturbance equations
do not permit an x-dependence for the perturbations as in (2-3), such
as in the case of compressible attachment-line flow and incompressible
attachment-line flow with curvature. Therefore a more general model
for the perturbations should be used to compute the linear stability for
these types of flow. In addition, such a model might justify the linear
x-dependence in (2-3) for the eigenmodes of incompressible flow with-
out curvature; an approach already followed by Lin and Malik (1996).
A concise formulation of such a model for the perturbations is

q(x, y, z, t) = q̂(x, y) exp(i(βz − ωt)) + c.c. (2-4)

Within this structure the perturbations may depend in an arbitrary
way on x. Throughout most of this thesis formulation (2-4) will be
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used, since this formulation contains (2-3) as a special case and is also
applicable for more general flows. Formulation (2-4) leads to problems
of considerably larger size to be solved compared to the traditional for-
mulation (2-3). For these large sized numerical problems specialized
algorithms have been developed as will be described in chapter 3.

2.3 Nonlinear models for the stability of
attachment-line flow

As described in § 1.2 the important phenomenon of subcritical insta-
bility of the attachment line, i.e. a strong decrease in critical Reynolds
number with an increase in the perturbation amplitude, is most likely
related to nonlinear interactions between the pertubations. Therefore,
the nonlinear stability of the attachment-line flow is a logical subsequent
problem to consider. In order to do this, equations based on the full
Navier–Stokes equations have to be derived for the evolution in time of
the nonlinear perturbations. The procedure for deriving these equations
is outlined below and a description of the various choices related to the
numerical problem will be given.

The nonlinear models that have been used in the literature are based on
the full Navier–Stokes equations in disturbance form in the attachment-
line context, see for instance Spalart (1988), rather than models based
on secondary stability theory, reviewed by Herbert (1988) or the PSE-
approach, also reviewed by Herbert (1997). In the past both assump-
tions given in (2-3) and (2-4) have been used as a basis for nonlin-
ear studies. The former assumption has the advantage that it leads
to the elimination of one spatial dimension resulting in lower compu-
tational requirements but it is also more restricted in use. For the
computational reason it has been popular in the past, see for example
Hall and Malik (1986), and Theofilis (1998). The latter assumption (2-
4) has the advantage that the physical model is more realistic and gen-
eral; it has been used e.g. by Joslin (1995). The equations for the evo-
lution of the perturbations can be derived by substituting the base flow
and the perturbations, i.e. Q(x, y) +q(x, y, z, t), into the Navier–Stokes
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equations and working out the algebra involving the equations for the
base flow and the perturbation model (2-3) or (2-4). As an example the
incompressible model used by Joslin (1995) is given below:

∂u

∂t
+ U

∂u

∂x
+
∂U

∂x
u+ u

∂u

∂x
+ V

∂u

∂y
+
∂U

∂y
v + v

∂u

∂y
+W

∂u

∂z
+ w

∂u

∂z

= −∂p
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+
1
R

(
∂2u
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∂y2 +
∂2u
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,

(2-5)
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(2-6)
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(2-7)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2-8)

with boundary conditions u = v = w = 0 at y = 0,∞, reflecting
the no-slip condition for the disturbances at the wall and unperturbed
free-stream flow. For the other boundary conditions, in the x- and
the z-direction, as well as for the initial conditions there are several
possibilities. First the possibilities for the boundary conditions in the
z-direction will be described, then those for the x-direction. Finally we
will discuss the various possibilities for the initial conditions.

In the spatial context a large computational box is used in the z-
direction, i.e. z ∈ [0, zmax]. The length of the computational box is
typically about 10 wave lengths, that is zmax ≈ 20π/R(β). Appropriate
outflow boundary conditions have to be given at z = zmax. Joslin (1995)
uses a buffer-domain technique at zmax and prescribes the unperturbed
base flow as the inflow boundary condition. The advantage of simu-
lations in the spatial setting is that they can correspond closely with
experiments. Another advantage is that the spatial setting can also be
used for spatially evolving base flows, i.e. base flows evolving in the
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z-direction as well. The base flows considered in this thesis do not
evolve in the z-direction. A major drawback of the spatial setting is
the large extent of the domain and corresponding large computational
requirements.

In the temporal context, as adopted here in chapter 6, the z-domain
has usually a length of just one or two wave lengths and periodic bound-
ary conditions are imposed in the z-direction. Given appropriate input
disturbances at t = 0, the equations can be solved, and the transition in
time to turbulence can be computed with the methods as described in
chapter 3. According to Kleiser and Zang (1991) the experimentally ob-
served transition of most flows can be successfully reproduced by means
of temporal simulations. The advantage of temporal simulations over
spatial simulations is that the computational costs are much less due to
the smaller z-domain used.

Next the x-domain and the boundary conditions in the x-direction
will be discussed. A symmetric x-domain can be used, [−xmax, xmax],
see for instance Joslin (1995), or an asymmetric domain can be used,
[−xmin, xmax], see Spalart (1990) and chapter 6. Furthermore a positive
x-domain, [0, xmax], has been used in chapter 6. Spalart (1990) used an
asymmetric domain in order to study crossflow instability and conse-
quently used a very large value of xmax. In order to limit the computa-
tional requirements xmin is much smaller than xmax in his simulations.
In chapter 6 the domain is also taken asymmetric for the same rea-
son. Since in chapter 6 the effect of crossflow is not studied, relatively
small values of xmax and xmin are used. Joslin (1995) used homoge-
neous Dirichlet and Neumann boundary conditions in the x-direction.
Although these boundary conditions are inconsistent with the Navier–
Stokes equations for the perturbations, he has obtained results in agree-
ment with linear stability theory. He adopted a large value of xmax,
namely xmax = 100, in order to ascertain that the inconsistent boundary
conditions did not influence the flow unphysically in the attachment-line
region. Spalart (1988) and (1990) used a buffer domain technique at the
ends of the x-domain. As a disadvantage these buffer domains occupy in
total about 25% of the computational domain. In chapter 6 the Navier–
Stokes equations are discretized in the grid cells next to the boundaries
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−xmin and xmax. In order to set up the finite-difference schemes needed
in these boundary cells the solution is extrapolated from the interior at
−xmin and xmax. In this way the Navier–Stokes equations are satisfied
everywhere and the computational domain in the x-direction can be
taken smaller than that of Spalart (1988) and (1990) and Joslin (1995).
In chapter 6 also results are presented on an x-domain and boundary
conditions for the study of nonlinear interactions between symmetric
modes only, that is x ∈ [0, xmax] combined with boundary conditions at
x = 0 which enforce the symmetry of the solution. The incorporation
of both the symmetry and the antisymmetry cases in the nonlinear sim-
ulations allows us to detect possible differences in the interactions that
occur between the various linear eigenmodes. In addition the role these
differences play in the transition to turbulence will be investigated in
chapter 6.

Finally, there are several ways for introducing disturbances into the
flow. Spalart (1988) introduced random perturbations into the flow by
means of a body force. Both Joslin (1995) and Theofilis (1998) intro-
duce perturbations by using blowing and suction through the wall. In
the spatial setting, see Joslin (1995), this disturbance-forcing method
is comparable to using a vibrating ribbon to generate disturbances in
wind-tunnel experiments. In the temporal context pure eigenvectors
computed with linear stability theory can also be used as input distur-
bances, see also chapter 6. This has some computational advantages,
in the sense that start-up phenomena are smaller than for the other
approaches described above.
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Chapter 3

Numerical methods and
parameters

As mentioned in § 2.2 equations governing small perturbations of com-
pressible and incompressible flow near the attachment-line can be de-
rived by linearizing the Navier–Stokes equations around a suitable base
flow. When (2-4) is substituted into these linearized disturbance equa-
tions the resulting system of partial differential equations forms an
eigenvalue problem for the perturbations on a two dimensional domain.
In this chapter the numerical methods used to solve for the reference
base flow and the resulting eigenvalue problems will be described. In
case the disturbances are not sufficiently small or for general perturba-
tions one has to resort to a direct numerical simulation using the fully
nonlinear Navier–Stokes equations in disturbance form. The methods
used for the direct numerical simulations, will therefore be described
subsequently. In order to set up and solve the above problems sev-
eral steps need to be taken, which are described in some detail in this
chapter.

As a first point, the computational domain on which the disturbance
equations are discretized has to be chosen which is described in § 3.1.
Secondly, the method for discretizing the derivatives encountered in
the equations for the base flow and the perturbations will be discussed
in § 3.2. Then the numerical methods to solve for the base flow are
described in § 3.3. This is followed by an outline of the algorithm to
solve the eigenvalue problem for the perturbations in § 3.4 including a

19
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discussion on the efficiency of the method chosen. Some remarks will be
made about the auxiliary routines, such as the solver used for the linear
systems, involved in the solution for the base flow and the eigenvalue
problems in § 3.6. Finally, the methods used for the direct numerical
simulations are discussed in § 3.5.

3.1 Computational domain

As a consequence of formulation (2-4), the perturbations q̂(x, y) need to
be solved on a two-dimensional xy-domain, as shown in figure 3-1. This

x

y

Figure 3-1: Attachment-line geometry

domain can be chosen rectangular for the simple geometry of figure 3-1
even if constant curvature is allowed, see Lin and Malik (1997). In this
setting the physical domain is of infinite size both in the x- and in the
y-direction. In order to facilitate the computer solution of the governing
equations the domain therefore was truncated in both directions, rather
than mapped to a finite domain by applying some specific coordinate
transformation. In the normal direction y ranges from 0 to ymax, where
ymax is sufficiently large. In the chordwise direction there are two possi-
bilities. If either a possible symmetry or antisymmetry of the flow and
the disturbances has been used explicitly then x may range from 0 to
xmax, otherwise x ranges from −xmin to xmax.
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As explained before in chapter 2 the structure of the base-flow can be
represented efficiently by functions of y alone. All base flows considered
in this thesis can be computed by solving systems of ordinary differential
equations on a one-dimensional domain in the normal direction for which
y ranges from 0 to ymax.

Within this domain the governing partial differential equations for
the disturbances can be discretized and solved on a Cartesian grid. In
order to simplify issues regarding the boundary conditions for e.g. the
pressure as well as to prevent so-called odd-even decoupling, see for in-
stance Gresho (1991), the partial differential equations are formulated in
primitive variables and are discretized on a staggered grid. These vari-
ables are (û, v̂, ŵ, p̂) or, in the case of compressible flow, (û, v̂, ŵ, ρ̂, T̂ ),
where ρ̂ and T̂ are the perturbation density and temperature respec-
tively. A grid cell of the staggered grid is shown below in figure 3-
2. Clearly, the unknowns û are defined on the positions (i, j−1/2),

v

u
^

i

j-1

j

^

i-1

y

w, p,
ρT,

^ ^

^ ^

xx
y

Figure 3-2: Cell of the staggered grid used to discretize the
equations for the disturbances

where the x-momentum equations are solved. Similarly v̂ is defined at
(i−1/2, j) where the y-momentum equations are solved and ŵ, p̂, ρ̂ and
T̂ are defined at (i−1/2, j−1/2) where the z-momentum, continuity and
energy equations are solved respectively. For the study of nonlinear ef-
fects on the evolution of the disturbances q(x, y, z, t) three-dimensional
models have been used which have also been discretized on a staggered
grid. In that case u is defined at the positions (i, j− 1/2, k− 1/2),
v at (i− 1/2, j, k− 1/2), w at (i− 1/2, j− 1/2, k) and p, ρ and T at
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(i−1/2, j−1/2, k−1/2). The use of a staggered grid is quite common
for the type of applications considered in this thesis; for example it has
been used by Joslin (1995) and Kazakov (1990). Its use could have been
circumvented in a number of ways, each with its own advantages and
disadvantages. See for instance Gresho (1991) for a thorough review on
this matter.

In order to solve the equations for the disturbances on these stag-
gered grids, flexible, high-order accurate discretization schemes have
been developed which will be discussed in the next section. In addition
the grid can be clustered in the x-direction near the attachment line
and in the y-direction near the wall according to the following formula:

ηk =
ηmaxak

(N − 1)(a+ 1)− k , (3-1)

where k = 0, . . . , N − 1, η = x or y, and the stretching parameter a
assumes values in the range 0.1–0.2.

3.2 Spatial discretization

When solving stability problems for fluid dynamics one is often inter-
ested in the growth rates of the perturbations near the neutral curve,
that is for those frequencies f = ω/2π where the growth rate −I(β) ≈ 0
in the spatial context. One usually would like to know whether the least
stable mode is growing, corresponding to a positive growth rate, or de-
caying. This information can be used, for instance in the engineering of
airplanes, to postpone or favor transition.

Near the neutral curve the real part of β, R(β), is typically O(1)
and the imaginary part of β, I(β), is close to 0. The eigenvalue prob-
lem for the perturbations has to be solved accurately in order to lo-
cate global stability properties such as the critical Reynolds number
and the neutral curve with minimal variation and to identify bound-
aries between regions where the computed growth rate is positive or
negative. For example, suppose that I(β) ≈ 10−3, then at least three
significant digits of the eigenvalue should be known just to determine
whether the growth rate is positive or negative. For this purpose the



Numerical methods and parameters 23

base flow should be known with a high degree of accuracy, since small
errors in the base flow usually will affect the accuracy of the computed
eigenvalue. For the same reason the equations for the perturbations
should also be solved with a high degree of accuracy. This high accu-
racy can be achieved by using fine grids in combination with high-order
accurate spatial discretization schemes, such as spectral discretization,
compact finite differences, or direct high-order finite-difference schemes,
such as central discretization. Each discretization method has its own
advantages and disadvantages and thus for each problem this trade-off
has to be considered in relation to the use of the various discretization
methods. This comparison is beyond the scope of this thesis and the
reader is referred to e.g. Fletcher (1988). For the present calculations
we have used finite-difference schemes and in order to avoid the use of
many grid points for sufficient accuracy we turn to relatively extended
high-order schemes. In the following the derivation and implementation
of the high-order accurate finite-difference schemes will be discussed. A
simple example will be used throughout the discussion to illustrate the
steps.

Example

Suppose we want to compute a third-order accurate approximation of
a first-order derivative of f in a grid point in the interior of the com-
putational domain. We assume that a non-uniform grid has been used
and that f is known in the grid points. A part of this grid is shown
below in figure 3-3. Suppose we want to compute the derivative of a

i-2 i-1 i
x

i+1 i+2
x x x x

Figure 3-3: Finite difference stencil, see text.

function f in the grid-point xi. First we determine a stencil which con-
tains sufficiently many points to compute ∂f(xi)/∂x with third-order
accuracy. The number of points needed depends on the required formal
accuracy and on the order of the derivative. This number of points
follows from the derivation of the formulas for the coefficients of the
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stencil by means of Taylor expansions in each of the grid points. For
the moment we consider a stencil of four points and illustrate the con-
struction of the scheme. The formal order of accuracy will be considered
afterwards. So by using a stencil which consist for example of the grid
points xi−2, xi−1, xi and xi+1, the required finite-difference scheme will
be derived for ∂f(xi)/∂x. This derivation proceeds as follows. In each
point xj , j = i− 2, i− 1, i+ 1 a Taylor expansion is set up as

Γj = ∆j
∂f(xi)
∂x

+
1
2

∆2
j

∂2f(xi)
∂x2 +

1
6

∆3
j

∂3f(xi)
∂x3 +O(∆4

j), (3-2)

where ∆j = xj − xi and Γj = f(xj)− f(xi). Since in this example the
point xi is fixed, the index i is left out of the notation. Assuming f(xj)
is known for each point of the stencil, then the equations in (3-2) form
a system of linear equations,

Ay = Γ +O(|∆|4),

y =
(
∂f(xi)
∂x

,
∂2f(xi)
∂x2 ,

∂3f(xi)
∂x3

)T
,

(3-3)

where T denotes the transpose and A is a 3× 3 matrix such that A =
(akl) = (∆k)l/l! . This can readily be solved and yields y = BΓ +
O(|∆|3), where B = A−1 and this means that

∂f(xi)
∂x

= Σ3
k=1b1kΓk +O(||∆||3). (3-4)

In (3-4) the matrix elements b1j , of B, are the coefficients belonging to
the points of the stencil. The order of accuracy is three as a consequence
of the division through the factor ∆j in front of ∂f(xi)/∂x in (3-2).

Generalizations

In the case of a nonuniform grid, the refinement of the grid has to be
‘uniform’ to obtain the formal accuracy of the scheme in practice. That
is, the refinement of the nonuniform grid must be a result of the refine-
ment of an underlying uniform grid which has been mapped smoothly
to the nonuniform grid. If a central stencil is desired the point xi+2
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can be added to the stencil, which results in coefficients corresponding
to a fourth-order accurate scheme. The reasoning sketched above for
the order of accuracy of the computed schemes can be extended to the
general case for Cartesian grids. In general, for smooth functions f it is
easy to see that the minimum number of grid points needed to obtain
an at least k-th order accurate scheme for the discretization of an n-th
order derivative is k + n. Coefficients for interpolating schemes can be
computed using the same reasoning. If, in the above example, xi is
an interpolating point, i.e. xi does not coincide with a grid point, then
f(xi) in (3-2) is also an unknown. In that case four grid points and cor-
responding Taylor approximations are needed to obtain a scheme with
third-order accuracy. Furthermore for interpolating schemes, the left
hand side Γj changes to Γj = f(xj).

Implementation

The method for generating finite-difference schemes as described above
can be fully integrated in one subroutine. This subroutine uses both the
formal order of accuracy and the order of the derivative to be approx-
imated as input parameters. In addition, this subroutine chooses for
each interpolation and derivative to be computed a suitable set of grid
points for which it computes the coefficients corresponding to the desired
scheme. Near the boundaries this subroutine automatically switches to
skewed schemes in order to operate only on interior grid points and
values. This approach is expensive in computing time, as opposed to
using pre-coded routines generating schemes with a specific fixed or-
der of the derivative to be approximated and a fixed formal order of
accuracy. However, our approach is flexible and can readily be imple-
mented, which is especially benificial for the high-order accurate deriva-
tives. Moreover, the coefficients need to be calculated only once during
a calculation and are stored subsequently. Since generating the schemes
in this way involves only a small percentage of the total computer time
needed for the computations the loss in efficiency is acceptable for the
applications discussed here.
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3.3 Numerical methods to solve for the
base flows

In order to compute the base flows considered in this thesis systems
of coupled ordinary differential equations have to be solved. A typical
example of such a system is the following:

u+ v′ = 0, (3-5a)

u′′ − u2 − vu′ = −1, (3-5b)

w′′ − vw′ = 0, (3-5c)

where the primes denote differentiation with respect to the single spa-
tial coordinate y. The variables u, v and w are needed for the velocities
of the incompressible swept Hiemenz base flow as will be described in
more detail in the next chapter. The system of equations (3-5) has
been derived by substituting (1-2) into the continuity equation, the x-
momentum equation and the z-momentum equation of the incompress-
ible Navier–Stokes equations respectively.

Such systems are discretized using high-order accuracy with the
finite-difference schemes described in § 3.2 and appropriate boundary
conditions at y = 0 and y = ymax. Since (3-5a) is derived from the
continuity equation it is discretized around the positions between the
grid points. In this way the common practice to use a staggered grid
is followed and decoupling of the solution in odd and even grid points
is prevented. The discretized equations can be solved in a Picard-type
or Newton-type iteration in order to handle the nonlinearity which is
contained in the equations. The resulting linear systems were solved by
the matrix solver BiCGSTAB(L) which has been developed by Sleijpen
and Fokkema (1993). In order to use this matrix solver effectively a pre-
conditioner is necessary, which was developed by Van der Ploeg (1992).
After solving the base flow, the solution is interpolated to the much
coarser y-grid used in the linear stability computations.

Alternatively one could have used a shooting method to solve sys-
tems like (3-5), for instance from the NAG-library. However, the present
approach turns out to be more robust with respect to initial estimates,
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discretization accuracy and the grid used, while it results in acceptable
turn-around times.

3.4 Eigenvalue solver

In order to compute the linear stability properties of the attachment-
line boundary layer, large eigenvalue problems have to be solved. In
particular two kinds of eigenvalue problems are of physical interest, i.e.

Aξ + ωBξ = 0, and (3-6)

Aξ + βBξ + β2Cξ = 0. (3-7)

Eigenvalue problems of type (3-6) occur if one wants to compute tempo-
ral linear stability properties, while problems of type (3-7) arise in the
spatial setting. Equation (3-6) can be solved e.g. using the QZ-algorithm
as described by Golub and Van Loan (1989) and implemented in the
LAPACK-library. This algorithm does not take into account any pos-
sible sparsity of the matrices involved and its performance scales as n3

with the number of unknowns. Eigenvalue problems of the type (3-
7) can be converted into (3-6) at the price of doubling the number of
unknowns.

Since these eigenvalue problems originate from a system of partial
differential equations, the number of unknowns is usually quite large.
Previous researchers, such as Lin and Malik (1996) and (1997), used the
QZ-algorithm to treat the temporal case for low Reynolds numbers only.
However, to treat the spatial case for high Reynolds numbers and/or
to study compressibility effects more efficient numerical methods are
needed. Here a method developed by Sleijpen et al. (1996a) is chosen
which will be described in the next section.

3.4.1 The JDPOL-method

Sleijpen et al. (1996a) have developed a method for solving polyno-
mial eigenvalue problems directly. This has been used here for solv-
ing the eigenvalue problems arising from linear stability theory. For
brevity this method is called JDPOL in this thesis, where ‘JD’ refers to
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Jacobi-Davidson and ‘POL’ refers to polynomial. The JDPOL-method
is a combination of the Jacobi-method and the Davidson-method, see
Sleijpen et al. (1996a), and is suitable for solving generalized polyno-
mial eigenvalue problems,

Pl(C)(β)x = 0, (3-8)

where Pl(C)(β) = βlCl+βl−1Cl−1+· · ·+C0 and Ci are general complex
matrices.

It is the only method that can be used to solve (3-7) directly and it
is considerably more efficient than the QZ-method when sparse matrices
are involved and only a few eigenvalues need to be computed. For the
application discussed in this thesis these two requirements are satisfied,
since we are only interested in the most unstable eigenvalues and the
finite difference discretization used results in sparse matrices Ci. The
advantage of QZ compared to JDPOL is that QZ delivers the full spec-
trum of discrete eigenvalues, while with JDPOL only a limited number
of eigenvalues close to a predefined target value are computed. To un-
derstand the advantages of JDPOL over other sparse-matrix eigenvalue
solvers, JDPOL is briefly described below. For details we refer to the
authors of this algorithm, Sleijpen et al. (1996a).

The JDPOL-algorithm constructs a search subspace on which the
problem is projected. The resulting, much smaller, eigenproblem is
solved yielding approximations σ for the desired eigenvalues β. Then
an approximate eigenvalue, θ, is selected, for which an approximate
eigenvector is computed. Subsequently, a correction equation for the
selected eigenvalue is set up based on these approximate solutions. This
correction equation can be solved using a sparse-matrix solver such as
BiCGSTAB(L). The computed correction is then used for the expan-
sion of the search space and the iteration of JDPOL is repeated until
the L2-norm of the residual Pl(C)(θ)ξ of (3-8) is below a user defined
threshold. Here ξ is the approximate eigenvector and θ the approxi-
mate selected eigenvalue. This correction equation involves a full ma-
trix, say S. However, the matrix product Sξ can be constructed using
sparse-matrix techniques and S can be preconditioned using a precon-
ditioner for the sparse matrix Pl(C)(θ). Unlike in the application of
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Sleijpen et al. (1996b) it is necessary to use preconditioning in the sta-
bility study, in order to obtain the solution of the linear systems in the
JDPOL-iteration. This preconditioner as well as the matrix solver used
for the correction equation are discussed in § 3.6.

For sparse generalized quadratic eigenvalue problems there are two
important alternatives for JDPOL, that is to say the Arnoldi shift and
invert strategy (ASI) developed by Sorensen (1992) and JDQZ devel-
oped by Fokkema et al. (1996). JDPOL has four advantages over ASI:

(i) Quadratic eigenvalue problems need not be converted into linear
generalized eigenvalue problems Ãx = βB̃x, but can be solved
directly. This is also an advantage of JDPOL over JDQZ.

(ii) The correction equation in JDPOL only needs to be solved ap-
proximately, for details see Sleijpen et al. (1996a).

(iii) The correction equation in JDPOL is better conditioned than sys-
tems like (Ã− θB̃)x = b which occur in the ASI-approach, espe-
cially if θ is close to an exact eigenvalue.

(iv) After each solution of the correction equation the new estimates
of the eigenvalues are readily available.

Especially the second and the third advantage of JDPOL over ASI are
crucial for the total efficiency of the eigenvalue solver. In the next
section an example is given which illustrates the efficiency of JDPOL.

Efficiency of JDPOL

In order to give an impression of the efficiency of the preconditioned
JDPOL eigenvalue solver we present timing results for various problem
sizes. An impression of the required computing time is gained using
some test runs. For ω = 0.077, R = 700 using a fixed estimate of the
most unstable eigenvalue σ = 0.2156, and fourth-order accurate dis-
cretization the computations as described in the linear stability prob-
lems, e.g. chapter 4, were timed for various problem sizes. For these
problems the most unstable eigenvalue of the underlying partial differ-
ential equations is β ≈ 0.217674 + i3.88 10−4. These computations were
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carried out on an R10000 Silicon Graphics Power Challenge with about
500 MFlops peak performance. The timing results for a simultaneous
calculation of the two eigenvalues with the largest growth rate among
the symmetric modes are shown in figure 3-4. In each case the same
ratio Nx/Ny = 0.8 was used, where Nx and Ny are the numbers of grid
points in the x- and y-direction respectively. As can be observed the
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Figure 3-4: System times for computing the two least stable
eigenvalues as a function of the number of unknowns n (+) as
well as curves proportional to n and n3.

calculation time increases more than linearly with the number of un-
knowns on coarse resolutions but much less than cubic, on fine grids.
For a large number of unknowns the computing time increases slightly
more than quadratically with the number of unknowns. Some gain in
performance may be obtained by allowing JDPOL to restart, that is,
regularly decreasing its search space. However, this requires problem
dependent fine tuning which obscures the comparisons made in the nu-
merical experiment described above and therefore was not considered
for this test-case.

Finally a large improvement in performance can be achieved by
adapting the initial estimate of the eigenvalue. For instance, compu-
tations on coarse grids can give quite accurate initial estimates for com-
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putations on finer grids. In practice this grid sequencing results in a
significant additional decrease in the amount of computer time used.

The same set of problems has also been solved using JDQZ, after
converting the quadratic eigenvalue problem into a linear one. We ob-
served that JDPOL is slightly faster than JDQZ, and uses only 60% of
the memory compared to JDQZ. This is due to the extra unknowns and
equations which have to be introduced in the latter case to convert the
quadratic into a linear eigenvalue problem. The amount of memory JD-
POL needed was quite moderate and increased approximately linearly
with the number of unknowns.

3.5 Numerical methods for direct numer-
ical simulations

In order to perform direct numerical simulations for compressible attach-
ment-line flow, four issues have to be addressed. These are the spatial
discretization, the time discretization, the boundary conditions and the
initial conditions. The latter two are discussed in chapter 6 while the
first issue has been discussed in § 3.1 and § 3.2. The temporal discretiza-
tion will be discussed below.

The discretized compressible Navier–Stokes equations for the distur-
bances (u, v, w, ρ, T ) at the interior points can be written in the following
form:

Dqt + f(q) = 0, (3-9)

where

q = (. . . ,qi,j,k,qi,j,k+1, . . . ,qi,j+1,k,qi,j+1,k+1, . . . ,qi+1,j,k,qi+1,j,k+1, . . .)
(3-10)

and qi,j,k = (ui,j,k, vi,j,k, wi,j,k, ρi,j,k, Ti,j,k) is the state vector with the dis-
turbances at the grid cell (i, j, k). The nonlinear function f represents
all terms in the Navier–Stokes equations containing spatial derivatives
and D is a blockdiagonal matrix with 5 × 5-blocks corresponding to
the grid cells in the interior of the domain. There are several ways
of treating the time derivatives, which are usually classified into im-
plicit and explicit methods. For the computations in chapter 6 both an
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explicit Runge-Kutta method and the implicit Crank-Nicolson scheme
have been used.

The explicit method has the benefit of low storage requirements and
ease of implementation. A disadvantage of explicit methods is the re-
striction on the time step related to the stability of these numerical inte-
gration schemes. Especially for fine grids this time step restriction can
become a large disadvantage. Therefore, the implicit Crank-Nicolson
scheme has also been used and is very benificial for the time discretiza-
tion in the case of fine grids. There is no time step restriction necessary
in order to ensure the stability of this scheme. However, the time step
should not be too large in order to ensure the accuracy of the time inte-
gration. Below some practical details of both schemes will be described.

In order to apply a Runge-Kutta scheme the system (3-9) has been
reformulated into

qt + D−1f(q) = 0. (3-11)

The Runge-Kutta scheme used for the time integration of (3-11) is of sec-
ond order accuracy and is described, for example, by Wasistho (1997).
The time step is very small to ensure the stability of the scheme and
it appeared that the accuracy of the time discretization is much bet-
ter than the accuracy of the spatial discretization and hence forms no
significant source of error.

The use of Crank-Nicolson time discretization leads at each time
step to an implicit solution method similar to the approach followed
by Heeg and Riley (1997). For a full description of the Crank-Nicolson
method see for instance Fletcher (1988). After discretization in space
and time using Crank-Nicolson time discretization at each time step a
nonlinear system F(q(new); q(prev)) = 0 is obtained, where q(new) and
q(prev) are the solutions at the new and the previous time level respec-
tively. For the solution of this system an inexact Newton scheme is used
as follows:

1. Set k = −1 and choose an initial approximation q0 of the solu-
tion at the new time level. For q0 a linear second order accurate
extrapolation of the solution at previous time levels has been used.

2. Compute an approximate Jacobian J of F(q0; q(prev)). This ap-
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proximate Jacobian is the Jacobian of the second-order accurate
discretized version of F(q0; q(prev)).

3. Compute a preconditioner of the approximate Jacobian J, with
the method described in § 3.6.

4. k = k + 1.

5. Compute the residual rk = F(qk; q(prev)).

6. Solve the correction equation approximately with the method de-
scribed in § 3.6:

Jpk = −rk. (3-12)

7. Update: qk+1 = qk + pk.

8. If |pk| is below a user defined threshold then stop the iteration
and go to the next time step. Otherwise go to step 4.

Note that only once per time step a Jacobian and its related precon-
ditioner are computed, which greatly improves the overall efficiency.
Since the time step is quite small in view of the required time-accuracy,
the robustness and the convergence properties of this inexact Newton
scheme turn out to be adequate for our purposes.

The efficiency of the implicit Crank-Nicolson time discretization
compared to the explicit Runge-Kutta scheme depends on the size of
the time steps used in both schemes. These time steps strongly vary
with the spatial resolution for the explicit Runge-Kutta scheme and vary
with the time accuracy required for the Crank-Nicolson scheme. Since
both the required accuracy and the spatial resolution can vary from run
to run, it is not straightforward to indicate a priori which scheme is
the most efficient. Rather a typical case needs to be treated with both
methods in order to actually find out about the suitability of one over
the other. This approach will be described in chapter 6.

3.6 Linear system solver

In order to solve for the base flow, the eigenvalue systems and to perform
the direct numerical simulations with implicit time discretization large
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sparse linear systems have to solved. Since systems in both complex and
real arithmetic are involved in this, all numerical methods for solving
linear systems have been implemented in both types of arithmetic. For
the solution of these linear systems a wide variety of numerical methods
can be used, each with its own advantages and disadvantages. For the
solution of the linear systems preconditioned BiCGSTAB(L), developed
by Sleijpen and Fokkema (1993), has been used, since it is robust and
easy to implement. This Krylov-type method combines the advantages
of both GMRES(L), and the Bi-CG method. By increasing the inte-
ger parameter L the GMRES-part is made more important and thus
the robustness of BiCGSTAB(L) is increased, usually at the cost of its
efficiency and use of memory. Appriopiate values of L have been deter-
mined in practice: for the computation of the base flow and the solution
of the eigenvalue problems L = 4 has been used and for solution of the
correction equation in the implicit direct numerical simulations L = 1
has been found appropiate.

As a preconditioner ILU(ε) developed by Van der Ploeg (1992) has
been used, since this preconditioning technique turned out to be reliable
in connection with BiCGSTAB(L), see Heeg and Riley (1997). This
preconditioner generates an approximate LU-factorization of its input-
matrix, which can have an arbitrary sparsity pattern. By decreasing
the parameter ε one can improve the approximate LU-factorization at
the cost of a larger amount of fill-in of non-zero matrix elements. A
disadvantage is that the optimal value of ε is problem dependent and
therefore an appropriate value of ε has to be determined in practice.
For the computation of the base flow ε = 0.001, for the solution of
the eigenvalue problems ε = 0.0001 and for solution of the correction
equation in the implicit direct numerical simulations ε = 0.01 has been
adopted.

To minimize the number of nonzero elements in the preconditioner,
the ILU-decomposition of matrices based on second-order discretization
has been computed instead of using a higher-order discretization. This
does not affect the global order accuracy of the computation though,
and considerably increases the efficiency of the eigenvalue solver and the
computation of the base flows.



Chapter 4

Stability of the
incompressible

attachment-line boundary
layer

In this chapter the linear stability of the incompressible attachment-line
boundary layer is investigated in the spatial context. For this purpose
the general representation (2-4) for the perturbations has been used.
An eigenvalue problem for the perturbations is solved along the lines
described in § 2.2 with the numerical methods described in § 3.4.

The organization of this chapter is as follows. In § 4.1 we formu-
late the equations governing the linear stability of the incompressible
attachment-line boundary layer and present some basic features of the
base flow. In § 4.2 we discuss the accuracy of our numerical schemes and
present the physical results computed. In particular we show ‘conver-
gence’ of stability properties at very high Reynolds numbers. Conclu-
sions which relate to the numerical algorithm and the physical results
are drawn in the last section.

4.1 Physical problem

We consider the stability of laminar viscous incompressible flow near
the attachment-line of e.g. an airfoil, see figure 1-2. This flow is lo-
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cally represented by a flow impinging perpendicularly on an almost flat
plate, see also figure 3-1. Note that the crossflow velocity component
W directed along the attachment line is not shown there. For incom-
pressible flow near the leading edge of a wing the state vector is denoted
by Q(x, y, z, t) = Q(x, y) + q(x, y, z, t), where Q = (U, V,W, P ) denotes
the base flow and q = (u, v, w, p) the perturbations. The three velocity
components (U, V,W ) are in the chordwise, normal and spanwise direc-
tion respectively. An analogous definition holds for the perturbations
(u, v, w).

4.1.1 Base flow

In the stability analysis the flow is decomposed into a base flow denoted
by the subscript 0 and a perturbation part. In the incompressible case
the base flow is the well-known Hiemenz flow which was adopted by
many authors, such as Hall et al. (1984) and Theofilis (1995). The base
flow is independent of the z-coordinate, since the attachment-line is
assumed to be infinitely long. Specifically, in the boundary layer, the
following variables and decomposition are introduced, see also § 1.1:

U(x, y, z, t) = U0(x, y)/R+ u(x, y, z, t), (4-1a)

V(x, y, z, t) = V0(y)/R+ v(x, y, z, t), (4-1b)

W(x, y, z, t) = W0(y) + w(x, y, z, t). (4-1c)

A system of equations for the base flow can be obtained by substitut-
ing (4-1) into the Navier–Stokes equations and retaining only the terms
related to the base flow. The resulting Hiemenz flow is an exact solu-
tion of the Navier–Stokes equations. It is essentially a one-dimensional
flow since if U0(x, y) = xU1(y) is substituted in the equations then a
system of ordinary differential equations can be derived for U1, V0 and
W0. Thus we arrive at

U1 +
dV0

dy
= 0, (4-2a)

U2
1 + V0

dU1

dy
= 1 +

d2U1

dy2 , (4-2b)
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V0
dW0

dy
=

d2W0

dy2 . (4-2c)

Equations (4-2) are identical to (3-5); recall that the system of equa-
tions (4-2) has been derived by substituting (1-2) into the continuity
equation, the x-momentum equation and the z-momentum equation of
the incompressible Navier–Stokes equations respectively. The base flow
is subject to the following boundary conditions:

U1(0) = W0(0) = V0(0) = 0, (4-3a)

U1(∞) = W0(∞) = 1. (4-3b)

The boundary conditions at y = 0 are a consequence of the no-slip
condition, while at y = ∞ the flow should match the inviscid outer
flow.

The base flow was determined using the methods of § 3.3. It grad-
ually changes in the x-direction and rapidly in the y-direction close to
the wall. In figure 4-1 and figure 4-2 U1, W0 and V0 are plotted. The
chordwise velocity component is of similar nature as in Blasius bound-
ary layer flow. As shown V0 < 0, V0 tends to zero as y → 0, which is a
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Figure 4-1: Components of the incompressible base flow, U1, W0.

consequence of the no-slip condition at the wall, and V0 ∼ −y at large
y, which is an immediate consequence of the continuity equation and
(4-3b).
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Figure 4-2: Component V0 of the incompressible base flow.

4.1.2 Equations for the stability problem

The structure of the base flow, i.e. the translational invariance in the
z-direction and the separability of the time-variable can be used to sim-
plify the functional form of the perturbation, i.e. q = q̂(x, y)ei(βz−ωt).
When computing stability properties in the spatial setting, ω is a real
and known parameter and the wave-number β is complex and results
from the computation as well as the corresponding eigensolution q̂(x, y).
After linearization of the Navier–Stokes equations around the incom-
pressible base flow, the following system of equations is obtained for the
amplitude function q̂ and β, see also § 2.2:

−iωû+ Uûx + V ûy + Uyv̂ + p̂x −
1
R

(ûxx + ûyy)

+iWβû+
β2

R
û = 0,

(4-4)

−iωv̂ + Uv̂x + V v̂y + Vyv̂ + p̂y −
1
R

(v̂xx + v̂yy)

+iWβv̂ +
β2

R
v̂ = 0,

(4-5)

−iωŵ + Uŵx + V ŵy +Wyv̂ −
1
R

(ŵxx + ŵyy)

+iβ(Wŵ + p̂) +
β2

R
ŵ = 0,

(4-6)
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ûx + v̂y + iβŵ = 0. (4-7)

This is a generalized, quadratic eigenvalue problem in β. In order to
solve this problem the equations (4-4)–(4-7) have been discretized on a
computational domain [−xmin, xmax]× [0, ymax] as desribed in chapter 3.
At y = 0 and y = ymax we use the following boundary conditions:

û = v̂ = ŵ = 0. (4-8)

The boundary conditions at y = 0 are related to the no-slip property of
viscous flow while at y = ymax we assume unperturbed flow.

As pointed out by Lin and Malik (1996) the system (4-4)–(4-7) per-
mits two kinds of modes, i.e. modes symmetric around the attachment
line x = 0, and modes antisymmetric around x = 0. These two types
of modes can be distinguished by their behaviour at x = 0. For the
symmetric modes one obtains

û =
∂v̂

∂x
=
∂ŵ

∂x
= 0, at x = 0, (4-9)

and for the antisymmetric modes this behaviour is

∂û

∂x
= v̂ = ŵ = 0, at x = 0. (4-10)

As can be seen from (4-9) and (4-10) the û-velocity is antisymmetric
for the symmetric modes and symmetric for the antisymmetric modes.
Lin and Malik (1996) use either (4-9) or (4-10) at x = 0 in combination
with either symmetric or antisymmetric boundary conditions at x =
±xmax to discriminate explicitly between these two types of modes.
In this chapter, however, the eigenmodes are computed without using
boundary conditions at x = 0 and no explicit boundary conditions at
x = −xmin, xmax. Instead, the various partial derivatives at x = −xmin,
xmax which appear in (4-4)–(4-7) are represented numerically on stencils
which are set up using the interior points only.

This treatment of the equations at the outflow boundary is more gen-
eral than the boundary conditions used by Lin and Malik (1996) and re-
flects the fact that x = −xmin, xmax are outflow boundaries. Moreover,
it will be shown below that with these more general boundary condi-
tions results can be computed which are identical to results computed
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with the boundary conditions used by Lin and Malik (1996). Such a
more general treatment of the outflow boundary conditions makes it
also possible to obtain eigenmodes for more complicated, possibly non-
symmetric base flows, for which the computations considered here serve
as a feasibility study. In addition, these more general boundary con-
ditions will be used in the computation of initial fields for the direct
numerical simulations presented in chapter 6.

4.2 Results

As observed by Lin and Malik (1996) the least stable modes follow the
sequence symmetric (S1), antisymmetric (A1), symmetric (S2) etc. That
is, the most unstable mode is symmetric, the next most unstable mode
is antisymmetric, then the next unstable mode is symmetric and so on.
The S1-mode coincides with the mode which can be computed with the
one-dimensional similarity model. The other modes differ from the S1-
mode mainly in behaviour in the x-direction, that is, they grow faster in
the x-direction than the S1-mode. Below, the accuracy of the numerical
methods is established first using several results known from literature.
Then results will be presented for the spatial stability of the attachment
line, in particular at high R.

In order to validate our approach the S1-mode at R = 800, ω =
0.1270977 was computed. For these runs it was found that the linear
stability results show a very large degree of independence with respect
to the size of the x-domain, and that xmin = −20 and xmax = 40 are
appropiate values. For the y-domain it was checked that the velocity
perturbations were small near ymax, that is O(10−8). This was achieved
using ymax = 60.

The results obtained with the second-, fourth- and sixth-order dis-
cretization method are collected in table 4-1. According to Theofilis
(1995) β = 0.3384631 + i 5.0 10−7 for the one-dimensional mode, us-
ing 64 spectral nodes. This mode corresponds to β = 0.3384638, in
the paper of Hall et al. (1984). As shown in table 4-1 we obtain β =
0.3384636 + i 7.8 10−8 using sixth-order discretization, a uniform grid in
the x-direction, Ny = 400 and a stretching parameter a = 0.2 for the
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Order β

2 0.3385072 + i 3.193572 10−5

4 0.3384627 + i 1.105772 10−6

6 0.3384636 + i 7.753301 10−8

Table 4-1: Eigenvalues of the S1-mode at R = 800, ω =
0.120977, Ny = 400, ay = 0.2 computed with second-, fourth-
and sixth-order discretization schemes.

grid in the y-direction. This is approximately the optimal stretching pa-
rameter for second- and fourth-order discretization. If, however, sixth-
order discretization is used, the stretching of the grid can be increased
further while retaining accurate results. Using e.g. a = 0.1, sixth-order
discretization and Ny = 100 we computed β = 0.3384625 + i 3.3 10−7.
As far as the resolution in the x-direction is concerned, it has been
found that only a very limited number of points is necessary to ascer-
tain the accuracy of the results computed. This is easy to understand
for the S1-mode, since with a second-order finite-difference method the
linear x-dependence can be represented with machine precision using
only two points. As a consequence of the generalized similarity proper-
ties of the attachment-line boundary layer, as has been first described in
Heeg and Geurts (1998b) and chapter 5, a more general but still poly-
nomial behaviour and thus a comparably small number of grid points
also applies for the higher modes.

Joslin (1996) validated two-dimensional linear stability of attach-
ment-line flow with a DNS of the A1-mode at R = 700 and ω = 0.1017.
We also compared with this A1-mode, see table 4-2 and 4-3, and ob-
tained excellent agreement at moderate resolution using the sixth-order
method. In practice however it is difficult to get a truly sixth-order
convergence in the results, for various reasons, such as the discretiza-
tion of the boundary conditions, the non-uniform grid and loss of sig-
nificance errors. Results similar to those in table 4-2 and 4-3 can also
be computed for the S2- and the higher modes. As mentioned we do
not prescribe symmetry or antisymmetry for the eigenvectors. Never-
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Order β

2 2.78367 10−1 − i 1.8410 10−3

4 2.75150 10−1 − i 1.0723 10−3

6 2.75152 10−1 − i 1.0599 10−3

Joslin (1996) 2.75152 10−1 − i 1.0599 10−3

Table 4-2: Eigenvalues of the A1-mode at R = 700, ω = 0.1017,
Ny = 200, ay = 0.1 computed with second-, fourth- and sixth-
order discretization schemes.

Ny β

20 2.77276 10−1 − i 3.7476 10−3

40 2.74968 10−1 − i 1.4298 10−3

80 2.75137 10−1 − i 1.0689 10−3

160 2.75152 10−1 − i 1.0601 10−3

Joslin (1996) 2.75152 10−1 − i 1.0599 10−3

Table 4-3: Eigenvalues of the A1-mode at R = 700, ω = 0.1017,
ay = 0.1 computed with the sixth-order scheme at various reso-
lutions in the normal (y-) direction.

theless the computed eigenvectors indeed turn out to be either sym-
metric or antisymmetric. This provides extra support for the results of
Lin and Malik (1996) and also for our treatment of the outflow bound-
ary. In figure 4-3 and figure 4-4 we show contours of the real and
imaginary parts of the velocity components of the A1- and the S2-mode
at ω = 0.09 and R = 1000. For plots of the S1-mode we refer to the lit-
erature, see for example Theofilis (1998). In particular the symmetry
of the velocity disturbances ûA1, v̂S2, and ŵS2 can readily be inferred
from these figures even though these modes have been computed using
an unsymmetric domain x ∈ [−20, 40]. In figure 4-5 the growth rates of
the three modes S1, A1 and S2 are presented for R = 650, 800, 1000,
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Figure 4-3: Contour plots of the real and imaginary parts of the
velocity components of the A1-mode at ω = 0.09 and R = 1000.
(a), (b) real and imaginary part of û, (c), (d) real and imaginary
part of v̂, (e), (f) real and imaginary part of ŵ.
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Figure 4-4: Contour plots of the real and imaginary parts of the
velocity components of the S2-mode at ω = 0.09 and R = 1000.
(a), (b) real and imaginary part of û, (c), (d) real and imaginary
part of v̂, (e), (f) real and imaginary part of ŵ.
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Figure 4-5: Growth rates −βi of the three least stable modes,
S1, A1, and S2, against F = ω/R 10−4, at R = 650, 800, 1000,
1600, and 2400.

1600 and 2400. It appears throughout that also in the spatial setting
the least stable modes follow the sequence S1, A1, S2, etc. Although the
S1-mode is everywhere the least stable mode, the difference in growth
rate with the A1- and the S2-modes significantly decreases with the
Reynolds number. This is also shown in figure 4-6, where the maxima
of these differences in growth rate are shown. Hence, for large Reynolds
numbers we expect that the two-dimensional modes, A1, S2, etc. are
physically equally important as the S1-mode, in the transition process
downstream of the leading edge. Not only the difference in growth rate
between the three modes decreases with the Reynolds number, but also
the difference in the wave numbers of the three modes decreases. Hence,
at high Reynolds numbers there appears to arise a ‘convergence’ of the
individual instability modes with respect to growth rate and wave num-
ber.
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of the A1 and the S2-modes with the growth rate of the S1-mode
against R.

4.3 Concluding remarks
A highly accurate method has been developed for solving stability prob-
lems, which has been applied to study the spatial stability of incompres-
sible attachment-line flow. No assumptions with respect to the symme-
try of the eigenmodes were made and a unified treatment based on
generalized quadratic eigenvalue problems was arrived at.

In addition results for the spatial stability of the attachment line
have been presented which can be directly compared with experiments.
These results confirm the temporal results of Lin and Malik (1996). The
use of more general boundary conditions in this paper makes the use of
more realistic and possibly inhomogenous base flows in future stability
analysis possible. Furthermore we have shown that at high Reynolds
numbers the first antisymmetric (A1) and the second symmetric (S2)
modes are about equally unstable as the first symmetric (S1) mode. The
study of the consequences of this ‘convergence’ for the transition process
over a swept wing at high R might provide interesting information and
quantify the nonlinear interaction between these modes.



Chapter 5

Stability of the compressible
attachment-line boundary

layer

In this chapter the linear stability of the compressible attachment-
line boundary layer is studied. So far, the instabilities in leading-edge
boundary-layer flow are almost exclusively studied in the incompressible
case. However, in several applications the compressibility of the flow can
be considered of considerable influence and the effects on the strength
and structure of the dominant instability is largely unknown. Moreover,
in the case of compressible flow the mathematical basis of the Görtler-
Hämmerlin assumption for the dominant instability is even more ques-
tionable, although Kazakov (1990) has performed some calculations on
this basis. Therefore in this chapter the stability of the compressible
attachment-line flow is studied using the general two-dimensional model
for the perturbations. With this approach spatial stability results are
computed which can be compared directly with experiments. In addi-
tion an approximate one-dimensional model for all perturbation eigen-
functions near the leading edge is proposed. Subsequently the validity
of this model is investigated using the fully two-dimensional formulation
of the linear stability problem.

The organization of this chapter is as follows. In § 5.1 the equa-
tions governing the stability of the three-dimensional attachment-line
boundary layer are formulated. In § 5.2 the numerical parameters used
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for solving the problems described in § 5.1 are presented. In § 5.3 the
computed physical results are discussed, where in particular the effects
of compressibility on the growth rates of the dominant instabilities and
on the spatial structure of the perturbations are considered. Further-
more an extension of the Görtler-Hämmerlin model will be proposed,
which can accommodate all eigenvectors and not just the similarity
mode. This model is verified using the computed two-dimensional per-
turbations. Conclusions which relate to the numerical algorithm and
the physical results are drawn in the last section.

5.1 Physical Problem

In this section we formulate the equations governing the mean com-
pressible attachment-line flow. Moreover, the eigenvalue problem for
the perturbations will be described together with appropriate boundary
conditions.

The flow near the leading edge of an airfoil is locally represented by
a flow impinging perpendicularly on an almost flat plate. In the sequel
the focus will be on the compressibility effects. The x-axis is taken to be
the chordwise direction, the y-axis is the direction normal to the surface,
and the z-axis is in the spanwise direction, as shown in figure 1-2. In
these directions the velocities are denoted by U , V, andW respectively.

In the stability analysis the flow is decomposed into a base flow de-
noted by the subscript 0 and a perturbation part. In the incompressible
case the base flow is the well-known Hiemenz flow which was adopted
by many authors. The compressible base flow follows along similar lines
as will be described momentarily. The base flow is independent of the z-
coordinate, since we assume that the attachment-line is infinitely long.
Specifically, we introduce the following variables and decomposition in
the boundary layer (see also Kazakov (1990)):

U(x, y, z, t) = U0(x, y)/R+ u(x, y, z, t), (5-1a)

V(x, y, z, t) = V0(y)/R+ v(x, y, z, t), (5-1b)

W(x, y, z, t) = W0(y) + w(x, y, z, t), (5-1c)

D(x, y, z, t) = ρ0(y) + ρ(x, y, z, t), (5-1d)
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M(x, y, z, t) = µ0(y) + µ(x, y, z, t), (5-1e)

T (x, y, z, t) = T0(y) + T (x, y, z, t), (5-1f)

P(x, y, z, t) = P0(x, y) + p(x, y, z, t), (5-1g)

where P is the pressure, M is the viscosity, T is the temperature and
D denotes the density.

5.1.1 Base flow

A system of equations for the base flow can be obtained by substituting
(5-1) into the Navier–Stokes equations and retain only the terms related
to the base flow. In particular the perturbations are assumed to be
small compared to the base flow components and hence only the leading
order terms are retained. In the neighbourhood of the attachment-line
U0(x, y) ≈ xU1(y) and thus we arrive at

ρ0T0 = γM2 (5-2a)

ρ0U1 +
dρ0V0

dy
= 0, (5-2b)

ρ0U
2
1 + ρ0V0

dU1

dy
= 1 +

d
dy

(
µ0

dU1

dy

)
, (5-2c)

ρ0V0
dW0

dy
=

d
dy

(
µ0

dW0

dy

)
, (5-2d)

ρ0V0
dT0

dy
=

(γ − 1)M2

Pr

d
dy

(
µ0

dT0

dy

)
+ µ0

(
dW0

dy

)2

, (5-2e)

P0(x, y) = 1− x2/(2R2), (5-2f)

see also Kazakov (1990). In (5-2) the temperature dependence of the
base flow viscosity µ0 is given by Sutherland’s law to a good approxi-
mation, Pr is the Prandtl number which is taken to be Pr = 0.72, and
γ = 1.4 is the ratio of the specific heats. When applying Sutherland’s
law in order to compute µ0 the free-stream temperature T∞ is used as
reference temperature.

The base flow is subject to the following boundary conditions:

U1(0) = W0(0) = V0(0) = 0,
dT0(0)

dy
= 0, (5-3a)
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U1(∞) = W0(∞) = 1, T0(∞) = T∞. (5-3b)

The boundary condition for T0 at y = 0 represents the fact that the wall
is assumed to be insulated. The three velocity components U1, V0, W0

and the base flow temperature T0 are shown in figure 5-1 for M = 0.4
and M = 0.8. As shown the base flow temperature has its maximum at
the wall, which increases with M . The other compressibility effects are
relatively small as indicated in figure 5-1.

5.1.2 Disturbance equations

The structure of the base flow, i.e. the translational invariance in the
z-direction and the separability of the time-variable can be used to sim-
plify the functional form of the perturbation, i.e. q = q̂(x, y)ei(βz−ωt),
in which we introduced the state-vector q = (u, v, w, p, ρ, T ). After lin-
earization of the Navier–Stokes equations around the compressible base
flow, we arrive at the following system of equations for the amplitude
function q̂ and β, see chapter 2 and Malik (1990):

ρ0(−iωû+ U0
∂û

∂x
+
∂U0

∂x
û+ V0

∂û

∂y
+
∂U0

∂y
v̂ + iβW0û)

+ρ̂
(
U0
∂U0

∂x
+ V0

∂U0

∂y

)
+
∂p̂

∂x
=

1
R

[
∂

∂x

(
µ0(l2

∂û

∂x
+ l0

∂v̂

∂y
+ iβl0ŵ) + µ̂(l2

∂U0

∂x
+ l0

∂V0

∂y
)
)

+
∂

∂y

(
µ0(

∂û

∂y
+
∂v̂

∂x
) +

∂U0

∂y
µ̂

)
+ µ0(iβ

∂ŵ

∂x
− β2û)

]
,

(5-4)

ρ0(−iωv̂ + U0
∂v̂

∂x
+ V0

∂v̂

∂y
+
∂V0

∂y
v̂ + iβW0v̂) + ρ̂V0

∂V0

∂y
+
∂p̂

∂y
=

1
R

[
∂

∂x

(
µ0(

∂û

∂y
+
∂v̂

∂x
) + µ̂

∂U0

∂y

)
+
∂

∂y

(
µ0(l0

∂û

∂x
+ l2

∂v̂

∂y
+ iβl0ŵ) + µ̂(l0

∂U0

∂x
+ l2

∂V0

∂y
)
)

+µ0(−β2v̂ +
∂ŵ

∂y
) + iβ

∂W0

∂y
µ̂

]
,

(5-5)
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Figure 5-1: Plots of the base flow components for M = 0.4 and
M = 0.8. (a): U1; (b): V0; (c): W0; (d): T0.
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ρ0(−iωŵ + U0
∂ŵ

∂x
+ V0

∂ŵ

∂y
+
∂W0

∂y
v̂ + iβW0ŵ) + ρ̂V0

∂W0

∂y
+ iβp̂ =

1
R

[
∂

∂x

(
µ0(

∂ŵ

∂x
+ iβû)

)
+

∂

∂y

(
µ0(

∂ŵ

∂y
+ iβv̂) + µ̂

∂W0

∂y

)
+iβµ0l0(

∂û

∂x
+
∂v̂

∂y
)− β2µ0l2ŵ + iβl0µ̂

(
∂U0

∂x
+
∂V0

∂y

)]
,

(5-6)

−iωρ̂+ ρ0
∂û

∂x
+
∂U0

∂x
ρ̂+ U0

∂ρ̂

∂x
+
∂ρ0

∂y
v̂ + ρ0

∂v̂

∂y
+
∂V0

∂y
ρ̂+ V0

∂ρ̂

∂y

+iβρ0ŵ + iβW0ρ̂ = 0,
(5-7)

ρ0(−iωT̂ + U0
∂T̂

∂x
+ V0

∂T̂
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∂T0

∂y
v̂ + iW0βT̂ ) + V0

∂T0
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∂P0
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(5-8)

ρ̂ = γM2 p̂

T0
− ρ0

T0
T̂ , (5-9)

where µ̂ ≈ (dµ0/dT0) T̂ denotes the perturbation in the viscosity due to
the temperature perturbation and lj = j − 2/3. This is a generalized,
quadratic eigenvalue problem in β for which the numerical approach
as described in chapter 3 can be used in order to arrive at an efficient
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treatment. Observe that (5-9) is not in the form of an eigenvalue equa-
tion; instead this equation is related to the state-equation of an ideal
gas and is used to eliminate the pressure from the other equations in
the system.

The computational domain is taken to be [0, xmax]× [0, ymax] in the
xy-plane. That is, the boundaries at x =∞ and y =∞ are represented
by boundaries at finite but large values xmax and ymax. At y = 0 we use
the following boundary conditions:

û = v̂ = ŵ =
∂T̂

∂y
= 0. (5-10)

At y = ymax the boundary conditions are

û = v̂ = ŵ = T̂ = 0. (5-11)

The boundary conditions at y = 0 reflect the no-slip property of viscous
flow and adiabatic wall conditions for the perturbations while at y =
ymax we assume unperturbed flow.

As pointed out by Lin and Malik (1996) the system of equations (5-
4)–(5-9) permits two kinds of modes, i.e. modes symmetric around the
attachment-line x = 0, and modes antisymmetric around x = 0. As
described in the previous chapter the boundary conditions for the sym-
metric modes are

û =
∂v̂

∂x
=
∂ŵ

∂x
=
∂T̂

∂x
= 0, at x = 0, (5-12)

The boundary conditions for the antisymmetric modes are

∂û

∂x
= v̂ = ŵ = T̂ = 0, at x = 0. (5-13)

Instead of using a large domain from −xmax to xmax together with
artificial direct enforcing of symmetry or antisymmetry through the
boundary conditions at x = ±xmax as Lin and Malik (1996) did, the
above alternative boundary conditions allow us to use a shorter com-
putational domain [0, xmax] in the x-direction. At the outflow bound-
ary the various partial derivatives which appear in the equations (5-



54 CHAPTER 5

4)–(5-9) are represented numerically on stencils which are set up us-
ing the interior points only. These numerical outflow boundary con-
ditions have been tested in the incompressible situation, which is de-
scribed in Heeg and Geurts (1998a) and chapter 4. In this way the
(anti-)symmetry in the eigensolutions has been exploited in order to
reduce the size of the computational problem.

5.2 Numerical parameters

In this section the various parameters used in the numerical methods to
solve for the base flow and the quadratic eigenvalue problem posed by
(5-4)–(5-9) are specified. Basically we can distinguish two main steps
for the latter problem. The system of partial differential equations (5-
4)–(5-9) requires an accurate and flexible representation of the various
partial derivatives which occur in this system. Moreover, the continu-
ous problem leads after discretization to a large algebraic generalized
eigenvalue problem which has been solved using the approach described
in chapter 3.

The equations and boundary conditions are discretized on a stag-
gered grid using finite differences for the discretization of the physical
variables. Fourth-order discretization and interpolation schemes were
found to be most efficient among the finite difference methods in the
compressible attachment-line computations.

Equation (5-9) has been used to eliminate p̂ from the system of
equations. The grid is clustered in both directions near x = 0 and
y = 0 in order to obtain adequate resolution near this important region
in an efficient manner. We verified that exactly the same results can be
computed using a uniform grid in the x-direction at the cost of a much
larger computational effort. Around the grid a layer of dummy-cells is
introduced, labeled with i = 0, j = 0, and j = Ny. In the interior
of the domain the system (5-4)–(5-8) is discretized, whereas in these
dummy-cells the boundary conditions are discretized.

In the simulations we used at least Nx = 50 and Ny = 150. More-
over, in order to obtain computational results which do not show an
appreciable influence arising from the finiteness of the computational
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domain we determined that xmax = 50 and ymax = 100 are appropri-
ate values. In the y-direction the smallest grid-cell near the wall has a
typical dimension of about 0.05. The fourth-order finite-difference dis-
cretization results in combination with the resolution and the computa-
tional domain in an accuracy of approximately five significant digits in
the eigenvalues for the cases studied. This is sufficient for our purposes.

The dimensions of the computational domain as specified above have
been chosen with some care in order to yield results which are quite inde-
pendent of the size of this domain while retaining an acceptable compu-
tational efficiency. The eigenvalues turn out to be virtually independent
of xmax within a large range of acceptable values provided that the mesh
sizes are not altered when varying xmax. However, if xmax is chosen com-
parably small the convergence of the eigenvalue solver is considerably
decreased. Moreover, if the dominant eigenvector is computed at a large
value of xmax the difference with the incompressible similarity mode is
better illustrated. On the other hand, since the eigenvectors rapidly
increase in the x-direction a larger value of xmax also should lead to a
larger value of ymax in order to ensure that the velocities decay properly
to 0 for y → ymax at large values of x. We did not introduce a for-
mulation of the far-field boundary condition near y = ymax which takes
the asymptotic behaviour of the eigenvector for large y into account.
Instead, we adopted a fairly large value of ymax and established that
a further increase in ymax does not lead to a change in the eigenvalues
beyond the fifth decimal.

In the next section some simulation results are presented. In partic-
ular we will concentrate on the effects of compressibility on the stability
characteristics of the base-flow and the changes in the structure of the
dominant eigenvectors corresponding to increased compressibility.

5.3 Results

The simulation results to which we turn in this section will be presented
in three ways. First, we provide a graphical and tabular illustration of
the structure of the dominant eigenvectors and propose a generalized
one-dimensional model which describes the instability-modes to a high
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degree of accuracy. Then, we will discuss the influence of the Mach
number M on this structure. Finally, we turn to a description of the
dependence of the eigenvalues on M and establish the strong stabilizing
influence arising from compressibility effects in this boundary layer flow.
For all stability computations presented in this section we set the free-
stream temperature to a typical value of 200 K and adopt a high value
of the Reynolds number R = 1500.

5.3.1 Chordwise behaviour of the eigenvectors

In the incompressible case the least stable modes follow the sequence
symmetric (S1), antisymmetric (A1), symmetric (S2) etc. as observed
by Lin and Malik (1996). In the results presented in literature for in-
compressible leading edge boundary layer flow and also in the present
compressible case the least stable mode corresponds to the symmet-
ric S1-mode, which obeys the Görtler-Hämmerlin assumption, except
for very small discrepancies. So far only the S1-mode was thought to
be an essentially one-dimensional mode, which can be computed using
a one-dimensional numerical model. In this subsection we will show
that the other modes can also be approximated very accurately by
one-dimensional models and that they show algebraic growth in the
chordwise coordinate. First we will formulate this generalized one-
dimensional framework and then we will present a posteriori checks
using the eigenvectors which have been computed with the two-dimen-
sional formulation.

For incompressible flow all modes which satisfy the Görtler-Häm-
merlin assumption also satisfy the incompressible counterpart of the
two-dimensional linear stability equations (5-4)–(5-9) exactly. In the
compressible case this is no longer true due to e.g. the x-derivatives in
the viscous terms of (5-4)–(5-9). However, for high Reynolds num-
ber flow the discrepancy turns out to be very small. For example
at R = 1500 the most amplified S1-mode which was found using the
compressible two-dimensional formulation as given in § 5.1 satisfies the
Görtler-Hämmerlin assumption to within two digits which shows the
value of the one-dimensional model from a practical point of view.

A simple example of extended ‘similarity behaviour’ of the per-
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turbation eigenmodes is furnished by the A1-mode. From the two-
dimensional data it was recognized that the v̂- and ŵ-component of
this mode depend linearly on the x-coordinate. Further evidence of
the algebraic dependence of the eigenmodes on the x-coordinate was
obtained by considering x-derivatives of the components of the other
modes. Along these lines, the û-component of the A1-mode and the v̂-
and ŵ-component of the S2-mode, which are all shown in figure 5-2,
turned out to vary quadratically in the x-direction. This remarkable
structure in the components of the eigenmodes motivated us to formu-
late a more general one-dimensional model which is detailed next.

In particular we propose ‘product-formulations’ in which the x-de-
pendence is represented by powers of x and the ‘coefficients’ of these
terms are functions of y alone. For the symmetric modes we have con-
sidered the following ‘Ansatz’:

ûSn(x, y) =
n−1∑
k=0

ũSn,k(y)x2k+1, (5-14)

χ̂Sn(x, y) =
n−1∑
k=0

χ̃Sn,k(y)x2k, (5-15)

and for the anti-symmetric modes:

ûAn(x, y) =
n∑
k=0

ũAn,k(y)x2k, (5-16)

χ̂An(x, y) =
n−1∑
k=0

χ̃An,k(y)x2k+1, (5-17)

where χ̂ corresponds to either v̂, ŵ, ρ̂ or T̂ .
It may readily be verified in this Ansatz that these algebraic x-

dependencies yield solutions which satisfy the system (5-4)–(5-9) if cer-
tain terms are neglected. In particular the term containing û∂P0/∂x

in (5-8), and specific (small) viscous terms in the entire system of equa-
tions need to be ignored in order for the Ansatz to be an exact solution.
The effect of these neglected terms increases with increasing x and de-
creasing R. However, in the results presented below it is demonstrated
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Figure 5-2: Quadratic x-dependence of velocity fields for M =
0.8 at R = 1500. (a) ũA1, (b) ṽS2, (c) w̃S2.
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that the coefficients ũn,k(y) and χ̃n,k(y) quickly decay for higher values
of k which suggests that only a finite and small number of terms plays
a role in the summations in (5-14)–(5-17). Therefore the discrepancy
between the eigenmodes as given by (5-14)–(5-17) and the prediction
obtained from the full two-dimensional formulation, which arises from
the neglect of certain terms as indicated above, is lower than intuitively
expected. It should also be noted that this structure still represents a
strong limitation on the shape of the eigenmodes since it implies that
each eigenmode can be represented as a sum of terms which are sep-
arable in x and y. Moreover, the spatial structures of the eigenmodes
for v̂, ŵ, ρ̂ and T̂ are identical within this approximation, which further
clarifies the underlying interrelations. Finally it should be noted that
for large x there is a non-negligible difference between the generalized
model and the solution of the eigenvalue problem. However, for such
values of x other effects than those represented by the neglected terms
may play a dominant role in the transition process. Such effects are for
example nonlinearity, or effects such as eventual curvature and surface
roughness.

5.3.2 One-dimensional structure of the eigenvec-
tors

In order to illustrate the structure of the eigenmodes in a more efficient
way we present and discuss the one-dimensional coefficient functions in-
troduced in the previous subsection. For this purpose the eigenmodes at
M = 0.8 and ω = 0.05763 are considered for sake of illustration. At this
value of ω the growth rate of the S1-mode is at its maximum. To evalu-
ate the approximations (5-14)–(5-17) we have computed the coefficient
functions from the two-dimensional modes using a least squares method
for the S1-, A1-, S2- and A2-modes. Other methods for obtaining these
one-dimensional coefficient functions have also been considered. How-
ever, adopting the least squares method provides a systematic procedure
as well as an estimate of the errors involved. The results corresponding
to this analysis will be presented in two different ways: first we turn to a
detailed quantification of the contributions and resulting errors involved
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in the Ansatz and then we focus on the shape of the one-dimensional co-
efficient functions. In order to obtain an impression of the x-dependence
of the eigenvectors and how well this compares to the proposed Ansatz
we also used xmax = 100 next to xmax = 50 for the computation of the
two-dimensional eigenmodes in this subsection. This enables a clearer
identification of the highest powers of x contained in the Ansatz. In ta-
ble 5-1 we quantify various properties of the Ansatz. It contains for each
mode and velocity component the following data: in the second column
the relative maximum error, and in the last three columns the maximum
of the absolute values of the corresponding one-dimensional coefficient
functions. Here the relative error ε as a percentage of a component q of
the eigenmode is defined as follows:

ε = 100
maxx,y(|qls(x, y)− q(x, y)|)

maxx,y |q(x, y)| , (5-18)

where qls denotes the least squares approximation.
As shown in the second column of table 5-1 the relative errors are

small; the A2-mode yields the largest error which is, however, still be-
low one percent. Furthermore, the maximum error occurs near the end
of the x-domain and near the wall. The generalized similarity model
slightly overestimates the growth in the x-direction. The small relative
errors ε reported in table 5-1 strongly support the assumption that the
four dominant eigenmodes have the essentially one-dimensional struc-
ture as formulated in (5-14)–(5-17). In view of the high accuracy with
which the spatial structure of these most important eigenmodes is cap-
tured by the Ansatz, in particular near the leading edge, the practical
use of this model can readily be inferred.

In figure 5-3 the amplitudes of the one-dimensional coefficient func-
tions corresponding to the velocity components of the S1-eigenvector
are shown and in figure 5-4 the corresponding amplitude of the pressure
and the temperature component are displayed at a particular, illustra-
tive Mach-number. These results clearly demonstrate the relatively
large perturbation-amplitudes near the wall with largest values for w̃.
It is of interest to compare the S1-mode with the other modes pre-
dicted. For that purpose we consider the next important A1-mode. In
figure 5-5 we display the two coefficient functions corresponding to the
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Field ε 0 1 2
ûS1 0.016 0.002602
ûA1 0.011 0.1673 2.469 10−5

ûS2 0.0055 0.002305 2.305 10−7

ûA2 0.86 0.04324 3.801 10−5 2.736 10−9

v̂S1 0.026 0.2262
v̂A1 0.014 0.002167
v̂S2 0.0095 0.01634 2.042 10−5

v̂A2 0.49 5.225 10−4 1.747 10−7

ŵS1 0.024 1.000
ŵA1 0.012 0.009422
ŵS2 0.0079 0.09218 8.732 10−5

ŵA2 0.37 0.002799 7.219 10−7

ρ̂S1 0.12 0.2350
ρ̂A1 0.067 0.002245
ρ̂S2 0.030 0.01725 2.109 10−5

ρ̂A2 0.49 5.485 10−4 1.799 10−7

T̂S1 0.32 0.08596
T̂A1 0.18 8.128 10−4

T̂S2 0.081 0.006346 7.577 10−6

T̂A2 0.5 1.930 10−4 6.522 10−8

Table 5-1: Table of ε from (5-18). The last three columns
contain the maxima of the absolute values of the corresponding
one-dimensional fields.



62 CHAPTER 5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
x 10

−3

y

u~ s1
,0

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

y

v~ s1
,0

(b)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

w~ s1
,0

(c)

Figure 5-3: S1 mode for M = 0.8 at R = 1500. (a) ũS1,0, (b)
ṽS1,0, (c) w̃S1,0.
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Figure 5-4: S1 mode for M = 0.8 at R = 1500. (a) T̃S1,0, (b) ρ̃S1,0.

u-velocity component of the A1-mode, i.e. ũA1,0(y) and ũA1,1(y). One
may directly compare these functions with the corresponding function
for the S1-mode ũS1,0(y) which is shown in figure 5-3(a). From this we
observe that the spatial structure of these one-dimensional coefficient
functions for the velocity fields does not vary much with the power of
x it corresponds to and the mode it is related to. There are also some
differences related to the behaviour as y → ymax. The one-dimensional
coefficient functions reduce to zero faster for the more unstable modes.
This is illustrated e.g. by comparing figure 5-3(a) with figure 5-5 show-
ing that ũS1,0 approaches zero faster than ũA1,0. So the effect of the
more unstable modes is slightly more localized near the wall. Moreover,
the one-dimensional coefficient functions corresponding to one and the
same mode converge to zero faster as the index increases. As an exam-
ple ũA1,1(y) approaches faster to zero than ũA1,0(y), see figure 5-5. This
behaviour was also observed for the other perturbation components and
modes.

The generalized one-dimensional model expressed by (5-14)–(5-17)
can also be used to derive a new approximate one-dimensional eigenvalue
problem. In fact by substituting the structure (5-14)–(5-17) into (5-4)–
(5-9) and discarding certain terms, as described previously, such an
eigenvalue problem can be obtained. After this operation the resulting
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Figure 5-5: A1 mode for M = 0.8 at R = 1500, (a): ũA1,0. (b): ũA1,1.

equations for each of the one-dimensional coefficient functions would
be the same except for the terms related to the approximations made.
The coefficients of these terms grow in the chordwise direction with
the power of x related to the perturbation considered. Since the re-
sulting equations are more or less the same for each one-dimensional
coefficient function it is not surprising that these functions have sim-
ilar spatial structure. The study of this approximate one-dimensional
eigenvalue problem and in particular how well it compares to the full
two-dimensional formulation is worth pursuing in the future.

5.3.3 Compressibility effects in the eigenvectors

In order to study the effect of compressibility on the eigenmodes we
also considered the S1, A1, S2 and the A2-mode at M = 0.4. From
the two-dimensional data we have computed the one-dimensional coef-
ficient functions and compared these one-dimensional fields with those
obtained at M = 0.8. Generally, the shape of the one-dimensional
fields does not change dramatically as M changes from M = 0.4 to
M = 0.8. The most notable change occurs in the spatial structure of
the temperature fields as shown in figure 5-4(a) and figure 5-6, where
the T -perturbations of the S1 mode are shown respectively for M = 0.8
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Figure 5-6: T̃S1,0 for M = 0.4 at R = 1500.

and M = 0.4. The relative amplitude of the coefficient functions corre-
sponding to the û-velocity as well as of the T̂ - and the ρ̂-perturbation
grows with increasing compressibility, while the relative amplitude of the
v-velocity decreases. The amplitude of the ŵ-coefficients stays the same
since it is with this component that we normalize the two-dimensional
eigenmodes. The y-position of the maximum of the coefficient functions
of the û- and the ŵ-fields in the boundary layer are farther away from
the wall for M = 0.8. Furthermore the boundary layer is less localized
in the y-direction for M = 0.8 compared to M = 0.4. The maximum
values of the one-dimensional fields which correspond with a power of
x greater than zero form a suitable measure for the growth in the x-
direction. According to this measure the growth in the x-direction of
the velocity fields decreases with a few percent while the growth of the
T̂ - and the ρ̂-fields increases with a factor of three to four as M goes
from 0.4 to 0.8. In summary we have a large change in the spatial
structure and chordwise growth of the perturbation eigenmodes for the
density and temperature while the corresponding effects on the velocity
components are of a much more gradual nature.
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The error ε as given by (5-18) was also computed for the two-
dimensional modes at different values of M . We compared the values
of ε for the first four eigenmodes at M = 0.4, M = 0.8 and for a truly
incompressible computation at M = 0. The values of ε are of the same
order for M = 0.4 and M = 0.8. For the incompressible computation,
however, ε is much lower, namely of the order of 10−6 for the S1, A1
and S2-mode. For the A2-mode ε is of the same order for all three
cases. Therefore it is safe to assume that the difference between the
two-dimensional modes and the one-dimensional model is not caused
by discretization errors and does not depend on the use of the least-
squares method which was adopted for the evaluation of the data. It is
also of some interest that the error does not build up significantly with
an increase of the Mach-number. The main error arises from substitu-
tion of the Ansatz in the temperature equation (5-8).

5.3.4 Growth rates

In order to complete the description of the eigensolutions associated
with the compressible Hiemenz flow we turn to the dependence of the
growth rates in the spanwise direction on the Mach-number. In Fig-
ures 5-7 and 5-8 the growth rates of the four least stable modes, i.e. the
S1, A1, S2 and the A2-modes, are presented for R = 1500 at M = 0.2,
0.6, and M = 1.0. As shown compressibility is strongly stabilizing,
just as occurs in other compressible flows such as compressible Blasius
boundary layer flow. We also studied the effect of variations in R and
observed, in line with other sources in literature, an increase in the in-
stability if R increases. In addition the maximum growth rate of the
least stable mode occurs at lower frequencies and lower wave numbers
as M increases, which is shown in figures 5-9 and 5-10. In figure 5-11
the frequency F is shown against M at which the maximum growth rate
occurs. One may infer that the S1-mode is unstable at R = 1500 for
Mach-numbers up to about 0.63. In addition we considered the depar-
ture of e.g. this maximum growth-rate from the incompressible value as
the Mach-number increases. From an analysis of the data we inferred a
nearly quadratic dependence of the growth rate on the Mach-number for
small values of M . Furthermore the compressible results converge read-
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Figure 5-7: Growth rates −βi of the four least stable modes,
S1, A1, S2, and A2 against F = (ω/R) 104, at R = 1500, and
M = 0.2, 0.6 and 1.0.

ily to the incompressible results. The growth rates were found identical
within line thickness at various frequencies for both incompressible and
compressible flow at M = 0.01. This provides a motivation for using
the incompressible model when comparing results from linear stability
theory with experiments at low Mach number as has been done in the
past, see for example Hall et al. (1984).

5.4 Concluding remarks

Results for the spatial stability of the attachment-line have been pre-
sented which show that also in the attachment-line boundary layer flow
compressibility has a stabilizing influence as far as the spanwise growth-
rate is concerned. In addition, we established also for the compressible
flow that the most unstable mode obeys the Görtler-Hämmerlin assump-
tion. However, since about equally unstable two-dimensional modes at
approximately the same wave number and frequency are present it is
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Figure 5-8: Growth rates −βi of the four least stable modes,
S1, A1, S2, and A2 against βr, at R = 1500, and M = 0.2, 0.6
and 1.0.
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likely that these modes also play a role in the transition process which
occurs further downstream. It has been shown that these modes grow
algebraically in the x-direction and that this growth becomes faster
for the less unstable modes. An approximate one-dimensional model
for all perturbation eigenfunctions near the leading edge was proposed
which may be used to arrive at a general one-dimensional approximate
eigenproblem for the compressible attachment-line flow. Further study
based on direct numerical simulations with linear stability results as in-
put will clarify the physical importance of the dominant instability and
its interactions with the almost equally important (anti-)symmetric in-
stabilities.



Chapter 6

Nonlinear stability of the
compressible attachment-line

boundary layer

The critical Reynolds number computed with linear theory is much
higher than the Reynolds number above which transition is observed in
experiments. Linear theory provides only necessary conditions for insta-
bility, not sufficient and moreover, is restricted to very small disturbance
amplitudes. Apart from instability due to infinitesimal perturbations
attachment-line flow might, however, also be unstable with respect to
finite amplitude disturbances. Therefore linear stability theory does not
necessarily provide an explanation for the experimentally observed sub-
critical instability. It has been shown by Theofilis (1998) that this effect
can not be explained either using two-dimensional nonlinear simulations
where the chordwise direction is eliminated with the Görtler-Hämmerlin
assumption. However, an effect which has not been sufficiently inves-
tigated so far is three-dimensionality combined with nonlinearity. As
shown in e.g. chapter 5 the symmetric and anti-symmetric modes other
than the S1-mode are about equally unstable as the S1-mode and can
not be found using models based on the Görtler-Hämmerlin assumption.
It is likely that these modes interact with the S1-mode leading to an
earlier transition of the attachment-line boundary layer than would be
the case for other flows, such as compressible flat plate flow. Further-
more, these nonlinear interactions may in itself be interesting physical
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phenomena. Therefore, in this chapter the nonlinear stability of the
compressible attachment-line boundary layer is studied to some extent.

Such a study could be performed using a number of techniques
among which the PSE technique, see Bertolotti (1991), or techniques
based on the theory of secondary instabilities, described by Herbert
(1988). The most general way, however, for such a study is the solution
of the Navier–Stokes equations by means of three-dimensional direct nu-
merical simulations (DNS). Such simulations have been performed for
incompressible attachment-line flow by Spalart (1988) and (1990) and
by Joslin (1995) and (1996). A large disadvantage of the DNS approach
is the huge computational resources needed for such simulations. As
pointed out in § 2.3 the computer requirements for DNS performed in
the temporal setting are much lower than in the spatial setting. Thus,
in order to make the DNS study feasible, the simulations presented here
have been performed in the temporal rather than the spatial setting. As
a disadvantage a comparison of the nonlinear results with experiments is
more difficult for temporal than for spatial simulations, although some
analysis can be made, see Gaster (1962). Since such general simulations
have not been performed before much attention has been paid to the
validation of these simulations.

In this chapter the results of the temporal three-dimensional com-
pressible direct numerical simulations are presented. First the focus
will be on the accuracy and validation of the results. Then the focus
will be on the differences between simulations in the general framework
and the simulations involving symmetric modes only. The latter type
of simulations are in some sense comparable to simulations involving
the S1-mode only, such as presented by Theofilis (1998). In this way
an attempt is made to extract from our results a possible mechanism
for the experimentally observed subcritical transition. It is found that
subcritical transition may well be related to the interaction between
symmetric and antisymmetric modes.

The organization of this chapter is as follows. First the model used
for the DNS will be described in § 6.1. In § 6.2 general considerations are
given for the numerical parameters used in the simulations. In addition
methods for extracting spectral properties and growth rates from the
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DNS data will be described. In § 6.3 a validation is presented and the
results are discussed. In particular a validation is presented in which the
resolution in space and time have been considered in § 6.3.1 and § 6.3.2
respectively. In § 6.3.3 the results from the nonlinear calculations are
discussed in the way described in the previous paragraph. Conclusions
are drawn in the last section.

6.1 Physical Problem

In this section we describe the equations governing the temporal evo-
lution of perturbations superimposed upon laminar compressible flow
near the leading edge of an airfoil. For this purpose the variables, i.e.
the velocities, the pressure, temperature and the density, are made di-
mensionless in the same way as in chapter 5 and the same definitions
of the Reynolds numbers Re∞ and R are used. The flow is decomposed
into a base flow and a perturbation, as in (5-1) of the previous chapter.
The same base flow as in chapter 5 has been adopted here, which is
governed by (5-2).

Starting from the base flow, equations can be derived for the non-
linear evolution of the perturbations q = (u, v, w, ρ, T ). This has been
done using the method sketched in § 2.3. The derivation of these equa-
tions is similar to the derivation of the equations for the linear stability
of attachment-line flow presented in the previous two chapters. For the
incompressible case these nonlinear equations have already been pre-
sented as an example in chapter 2. In the same way as in chapter 5
the state-equation is used to eliminate the pressure disturbance from
the other equations. Moreover the viscosity is given by Sutherland’s
law. Cubic terms in the (small) disturbance amplitude which arise from
viscosity are neglected. Since these terms are small the physical impli-
cations of our results do not depend on this assumption, while they do
give rise to a significant simplification in the governing equations. Since
the equations describing the nonlinear evolution of compressible pertur-
bations are rather lengthy and add little to the discussion here they are
not presented explicitly, and the reader is referred to the literature, see
for example Malik (1990). Next the initial conditions used for the direct
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numerical simulations will be specified. The computational domain as
well as the boundary conditions will be presented afterwards.

6.1.1 Initial conditions

As described in § 2.3 disturbances can be introduced in the simulations
in several ways. For the simulations presented in this chapter perturba-
tions derived from the linear eigenmodes have been used for the initial
conditions of the nonlinear simulations. The real part of the eigenmode
computed using temporal linear stability theory of the attachment-line
flow is used as an initial condition for the direct numerical simulations.
In this chapter the most unstable S1-mode is used as an initial con-
dition in each simulation. The initial disturbance amplitude is taken
to be ε = 0.005 in all simulations. The direct numerical simulations
use the same xy-grid and the same boundary conditions in the x- and
the y-directions of the computational domain as have been used for the
computation of the initial eigenmode. Therefore the initial eigenmodes
need not to be interpolated on the grid used in the direct numerical
simulations, which increases the reliability of the DNS results.

The results of temporal simulations always depend on the initial con-
ditions to a certain extent. Therefore in an initial study a comparison
was made with a simulation with a different initial field using the eigen-
mode plus its complex conjugate. For this simulation on a coarse grid
the same global behaviour has been found. This gives some confidence
that the physical phenomena appearing in the simulations can also be
studied using different initial conditions.

6.1.2 Computational domain and boundary condi-
tions

For the reasons mentioned at the beginning of this chapter and in
§ 2.3 the simulations presented are temporal simulations, i.e. in the z-
direction periodic boundary conditions are imposed. As a consequence
the length of the domain in the z-direction was chosen equal to an in-
teger times the wave length of the initial field in the z-direction. In the
computations described below the length of the z-domain is always set
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exactly equal to a single wave length, that is z ∈ [0, 2π/β], where β is
the real and known spatial wave number in the spanwise direction. This
further reduces the computer requirements as opposed to choosing the
length of the z-domain equal to more than one wave length. However,
there is also a disadvantage of using only one wave length instead of
more. As has been pointed out for instance by Bertolotti (1991) there
are two ‘routes to transition’ for the incompressible Blasius boundary
layer. The first possibility is that a three-dimensional wave emerges
from a low amplitude perturbation with the same frequency as the dom-
inant, initial, wave. These waves interact leading to the generation of
an increasing number of harmonics until the flow becomes turbulent.
The second possibility is that the initial, dominant, wave interacts with
a wave of only half the frequency of the initial wave. With only a
single wave length in the z-direction the latter type of transition can
not be simulated, as pointed out by e.g. Zang and Krist (1989). For
the simulations presented below the focus is on the interaction between
symmetric and antisymmetric modes. Since these modes initially all
have the same wave number, their nonlinear interaction can therefore
very well be studied with the size of the z-domain chosen here.

The computational domain in the y-direction is given by [0, ymax]. At
the wall, y = 0, no-slip, adiabatic wall conditions have been prescribed
for the perturbations by imposing (5-10) and at y = ymax the condition
of zero perturbations has been imposed, i.e. (5-11). The boundary con-
ditions at y = ymax model an unperturbed free-stream. These far-field
boundary conditions become increasingly more difficult to satisfy as the
computations proceed. Since the boundary y = ymax is far away from
the physically interesting region, it is anticipated that these boundary
conditions have only a small influence on the solution near the wall in
the present results. Finally for the x-domain x ∈ [−xmin, xmax]. In
the case that the simultaneous evolution of both symmetric and anti-
symmetric modes is studied xmin has been taken to be strictly greater
than zero, otherwise xmin = 0. In the latter case the evolution of either
symmetric or antisymmetric modes can be studied and the solution is
forced to be either symmetric or antisymmetric by imposing (5-12) or
(5-13) respectively at x = 0. In both cases no outflow boundary condi-
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tions have been prescribed at x = xmax, but we simply determine the
fluxes using data from the interior of the domain. In the first case no
outflow boundary conditions have been used on x = −xmin either and
since xmin > 0 the important region around x = 0 is included in the
analysis in a general way. We refer to chapters 4 and 5 for further de-
tails about the computational xy-domain and the boundary conditions
in these directions.

6.2 Numerical parameters

In this section guidelines are given for the numerical parameters con-
cerning the grid and the size of the computational domain. In addition
methods for extracting spectral properties and growth rates from the
DNS data will be described. These quantities form measures of central
importance in the validation and the characterization of the physical
properties of this flow.

Direct numerical simulations are notoriously expensive with respect
to computer requirements. This can be illustrated by means of a com-
parison between the computer requirements necessary to compute a
single eigenvalue/eigenvector pair for the study of the linear stability of
compressible attachment-line flow and a single run of a direct numerical
simulation. The computer time needed for the first is typically in the
order of less than 15 minutes. The latter, however, takes typically sev-
eral weeks on a single processor of a Silicon Graphics Power Challenge.
This has an important consequence; in the case of linear stability com-
putations one can always stay on the safe side with respect to spatial
resolution and the size of the computational domain. Therefore, the
eigenvalues presented in chapter 5 could be computed with an accuracy
of approximately 5 digits. For the direct numerical simulations the re-
sults are necessarily more modest but an attempt has been made to
present results which are accurate up to the fourth digit in the linear
regime.

From the experience with linear stability calculations, see below and
chapter 5, it can be concluded that between 60 and 150 points are
necessary in the y-direction in order to obtain results with the desired
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accuracy. In the x-direction the same reasoning can be applied, from
which about 10 points for the x-direction can be inferred. The grid
in the x-direction can be taken much coarser than the y-grid since in
the linear regime the solution behaves much smoother in the x-direction
than in the y-direction, see chapter 5. In the z-direction between 16 and
32 points will be necessary, as pointed out by Kleiser and Zang (1991)
in order to arrive at results which bear some physical significance. These
values for the mesh are used for a validation of the spatial resolution,
which will be presented in § 6.3.1.

Next we specify the size of the computational domain. In the z-
direction the size is exactly one wave length of the initial perturbation as
described above. In the y-direction ymax = 80, which is smaller than the
value used in chapter 5 but still adequate for the specific computations
presented below. In the x-direction also a relatively small computational
domain has been used, xmin = 20 and xmax = 40. As shown in chapter 5
the behaviour of the eigenmodes is quite smooth in the x-direction.
This, in combination with the fact that the linear stability results show
a very large degree of independence with respect to the size of the x-
domain, justifies the use of these chordwise dimensions.

In order to be able to compare the direct numerical simulations with
linear stability theory, growth-rate data need to be extracted from the
simulation data. For the computation of the growth rate from DNS
data first the flow field is integrated, yielding

E(t) =
∫ zmax

0

∫ ymax

0

∫ xmax

xmin

(u2 + v2 + w2) dx dy dz. (6-1)

From this the growth rate can be computed using

I(ω)(t+ δt/2) =
1
2

log(E(t+ δt)/E(t))/δt, (6-2)

where δt is the numerical time step. Other methods, yielding identical
results, can be applied as well, see for example Theofilis (1998).

It is often interesting to analyze the spectral properties of DNS data.
These data can provide information about the nonlinear interactions be-
tween the modes. In this chapter a limited spectral analysis is performed
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of the w-perturbation. In order to extract the spectral information, the
w-fields have been integrated in the x- and the y-direction, yielding

W(z, t) =
∫ ymax

0

∫ xmax

xmin

w dx dy. (6-3)

The fields W(z, t) can be analyzed with a fast Fourier transform in the
z-direction. This yields a complex sequence w̃k(t) which resembles the
discrete Fourier components of W(z, t):

W(z, t) =
Nz/2∑
k=0

w̃k(t)eikβz. (6-4)

For the ease of presentation w̃k(t) has furthermore been normalized with
w̃1(0). In the transition of laminar flow other, super-harmonic, modes
start to grow until their amplitude is comparable to the amplitude of
the initial mode. This is the case in for instance plane channel flow, see
among others Zang and Krist (1989).

6.3 Results and validation

Two parameters still need to be specified for each run, namely the
Reynolds number and the Mach number. Ideally one would like to do
parameter studies for these parameters. Unfortunately only a limited
number of runs can be performed due to the large computer require-
ments of direct numerical simulations. These runs serve mainly as a
feasibility study, a validation of the algorithms used and a study of
the first nonlinear interactions in the ‘late’ linear regime. A parameter
study in R and/or M is therefore still a challenging task for future re-
search. As a consequence fixed values for R and M have been chosen,
R = 800 and M = 0.2. This value of R is above Rcrit, such that initially
the input disturbance grows in time. As the amplitude of the dominant
wave increases it is anticipated that nonlinear effects come into play and
transition to turbulence may take place. The Mach number has been
chosen relatively low for two reasons. Firstly, only for low Mach num-
bers is R = 800 still above Rcrit. Secondly, since most experiments have
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Run Type Ny Periods
(a) General 60 6
(b) General 120 0.75
(c) General 120 21
(d) Symmetric 120 18

Table 6-1: Direct numerical simulations at β = 0.26677, R =
800, M = 0.2, Nz = 24. For the symmetric run (d), Nx = 8,
otherwise Nx = 12.

been carried out in the incompressible and low Mach-number regime,
our choice of M facilitates an eventual comparison with experiments.
Several runs have been performed under these physical conditions.

In this section the spatial and the temporal accuracy of these simu-
lations will be assessed and their physical implications will be discussed
afterwards. In particular, two approaches based on linear stability the-
ory have been followed in order to assess the spatial accuracy of the
direct numerical simulations as will be described in the next subsec-
tion. Subsequently the temporal accuracy will be considered using two
simulations at several sizes of the time step, which will be described in
§ 6.3.2. As has been explained in § 3.2 the growth rate is quite sensitive
to the resolution and the discretization method used. Therefore the
focus is on this quantity in the validation.

In § 6.3.3 the spatial accuracy of the simulations will be assessed
furthermore by results obtained from long time simulations performed
at different spatial resolutions. These runs are continued for several
periods in time and fine and coarse grid results will be compared over
a longer period in time instead of over a single small time step as in
§ 6.3.1. For ease of reference and overview a table of all these long time
runs is provided in table 6-1. In addition the results of the fine-grid
computations will be analyzed from an historic and physical point of
view in § 6.3.3.
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Nx ω

8 0.097658 + i 0.001558
12 0.097659 + i 0.001557
16 0.097660 + i 0.001557

Table 6-2: Linearly most unstable temporal eigenvalue, i.e. at
β = 0.26677, R = 800, M = 0.2, Ny = 60, variation of Nx.

6.3.1 Spatial accuracy

In order to determine some minimal resolution requirements a grid study
has been performed for the temporal linear stability of the compressible
attachment-line boundary layer. From this grid study an appropriate
resolution in the xy-plane has been chosen. At this xy-resolution a
grid study for the z-direction has been performed, using simulations
consisting of a single, very small, time step. With appropriate resolution
in the z-direction the observed growth rate should be equal to the growth
rate computed using linear stability theory.

In order to get a basic idea of the resolution needed in the xy-plane
the eigenvalues at different values of Nx and Ny are shown in table 6-2
and table 6-3 respectively. These two tables refer to the case without
a restriction on the symmetry or antisymmetry of the perturbations.
As shown in table 6-2 an increase of the number of grid points in the
x-direction does not have any effect on the value of the fourth digit of
the growth rate. Thus Nx can be taken as low as Nx = 8. As shown in
table 6-3 the growth rate is 0.0012 using either Ny = 120 or Ny = 180
and the difference with the growth rate for Ny = 90 is quite small. The
relative difference between the growth rates at Ny = 120 and Ny = 180
is less than 2.5%. Therefore it appears that Ny = 120 is appropriate in
the linear regime.

Next the influence of the resolution in the z-direction will be con-
sidered. This has been done by computing the growth rate with the
method described above. at a very small value of t. It turned out
that this growth rate is almost independent of Nz for Nz = 16, 24, and
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Ny ω

30 0.096243 + i 0.002709
60 0.097659 + i 0.001557
90 0.097587 + i 0.001291

120 0.097550 + i 0.001226
180 0.097529 + i 0.001199

Table 6-3: Linearly most unstable temporal eigenvalue, i.e. at
β = 0.26677, R = 800, M = 0.2, Nx = 12, variation of Ny.

32. At these values of Nz the growth rate is equal to the growth rate
computed using linear stability theory as expected. This result is also
in agreement with the general observation of Kleiser and Zang (1991),
who pointed out that a resolution of 16–32 points per wave length is
sufficient in order to obtain accurate DNS results in the linear regime.
It can be concluded that in this case, using fourth order discretization,
Nz = 16 or more will be adequate for our purposes.

6.3.2 Temporal accuracy and efficiency

The temporal accuracy of the simulations has been checked for run (c),
using the implicit time discretization against run (b), using explicit time
discretization. Both runs use the general form for the perturbations in
addition to the same spatial resolution, i.e. Nx = 12, Ny = 120 and
Nz = 24 with the physical domain and the boundary conditions as
described above. Note that the spatial resolution used is expected to
result in four-digit accurate results, which implies that this comparison
is relevant for practical purposes. The time steps used are 2πR(ω)/4000
and 2πR(ω)/400 for run (b) and (c) respectively; that is a 4000th and a
400th of a period in time of the most unstable mode. The first value of
the time step can not be chosen larger for reasons of stability of the time
integration. The second value of the time step is also near optimal, since
for larger steps the Newton iteration within each time step converges
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Figure 6-1: Growth rate as function of time of runs (b) and
(c) at R = 800, M = 0.2, Ny = 120 comparison between explicit
and implicit time discretization.

slower.
The growth rate is plotted as function of time in figure 6-1. As

shown the difference in growth rate between these two runs is negligible
compared to the growth rate itself. From this we infer that computations
with time steps of only one 400th of a period yields results of basically
the same accuracy as computations with time steps of one 4000th of a
period. Therefore a time step of one 400th of the period in time of the
initial perturbation appears sufficiently small for our purposes. Finally
the system times of these two computations have been compared. It
turned out that the simulation using implicit time discretization is 2.7–
2.9 times faster per simulated period of time than the computation using
explicit time discretization. Since the time step used in the explicit
scheme can not be chosen much larger in order to ensure the stability
of the scheme, the implicit discretization method turns out to result in
a much higher overall efficiency compared to the explicit method.
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Figure 6-2: Growth rate as function of time at R = 800, M =
0.2, run (a) and (c).

6.3.3 DNS Results

In the previous subsections the spatial accuracy has been validated using
results from linear stability theory as reference values. Since the code
for computing linear stability results has so many similarities with the
DNS code, the appropriate minimal x- and y-resolution could even be
determined entirely using the results from linear stability theory. In
order to complete the validation the influence of the spatial resolution
on the accuracy of the results will be considered for large times below.
In addition the physical implications of the results will be discussed.

For this purpose we consider run (a) and (c), where no restriction has
been placed on the shape of the perturbations. These two computations
differ only in the resolution in the normal direction as shown in table 6-
1. Simulation (a) has been terminated earlier as a consequence of the
limited computer resources. In figure 6-2 the growth rate is shown for
these two general simulations. First the growth rate rapidly increases
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somewhat, and stays roughly constant for a few periods. Furthermore,
a signal with a frequency of about two times the frequency of the initial
mode appears in the coarse grid simulation. Since this signal is not
present in the fine grid simulation it might be attributed to the larger
numerical noise connected with the coarse grid used. Also, at later
times the growth rate computed with the fine grid behaves smoother
than the growth rate computed with the coarse grid, which also might
be attributed to the same effect. After 4 periods there is a rapid and
large increase in the growth rate and after 11 periods the growth rate
starts to decrease again. The two simulations have not been continued
further in time due to limited computer resources. Analysis of the v-,
w- and u-disturbances reveals that throughout the entire time frame
considered the v- and w-velocities remain growing at a nearly constant
rate. In addition a corresponding change in the rate of growth of the
u-disturbance, as shown in figure 6-3, is responsible for the increase in
the growth rate. The increase in growth rate occurs slightly later in
time for the fine grid simulation than for the coarse grid simulation.
However, the increase in growth rate occurs for both simulations at
about the same amplitude of the u-disturbance, i.e. at a disturbance
level of about 1%.

The question as to how accurate these two simulations really are
remains. As pointed out in § 6.3.1 the accuracy will improve little when
increasing the number of grid points in x- and the z-direction for the
time frame treated here. On the other hand, some improvement in the
results can be obtained when the grid is refined in the y-direction. From
figure 6-2 it can be seen that both run (a) and run (c) behave in a con-
sistent and similar way. The difference in growth rate between these
two simulations is O(10−3) at every instant of time; not only in the
beginning of the simulations but also for larger times. From the size
of this difference one may infer that the fine grid simulation (c) is at
least qualitatively correct and would appear to be physically reliable.
In particular, the results of this simulation provide some evidence for
the experimentally observed instability below Rcrit, since this simula-
tion predicts a much larger growth rate than the growth rate obtained
using linear stability theory. Nonlinear three-dimensional mechanisms
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Figure 6-3: Amplitude of the u-disturbance as function of time
at R = 800, M = 0.2, run (a) and (c).

must be held responsible for this since this increase in the growth rate
has not been found by other researchers, who used smaller disturbance
amplitudes (Joslin (1995)) or performed two-dimensional simulations
(Theofilis (1998)). A strong increase in the growth rate during nonlin-
ear stages in the evolution has also been observed for the compressible
Blasius boundary layer, see Geurts et al. (1994).

In view of the apparent reliability of this simulation it is interesting
to focus on the other flow quantities obtained with simulation (c). The
spectral information of the w-disturbance and the time history of the
disturbance components at a fixed point close to the wall will be con-
sidered here. First spectral information of the w-disturbance is shown
in figure 6-4. During this simulation the dominant wave has the same
wave number as the initial wave. Note that this wave can still be a
mixture of the initial S1-mode and other symmetric and antisymmet-
ric modes, since these all have approximately the same wave length.
The next important frequency is a signal independent of z, (0); it arises
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Figure 6-4: Absolute value of the Fourier coefficients of the
w-disturbance w̃k(t), run (c).

from nonlinear interactions between the perturbation components. This
mean flow distortion is larger than for instance the mean flow distortion
for channel flow, see Zang and Krist (1989). The reason is that in the
case of attachment-line flow the resonance behaviour of the linear modes
is stronger than for channel flow, e.g. more modes have wave numbers
close to each other. The super-harmonics form the smallest contribu-
tions although the first super-harmonic (2) is initially larger than the
signal (0). Observe that signal (2) initially displays a rapid variation in
time. These variations might be what is left from the numerical noise
in the coarse grid simulation (a), displayed in figure 6-2.

The time history of the solution at a single point can be used to fur-
ther investigate the interesting differences between the nonlinear results
and linear stability theory. As shown in figure 6-5 the sudden increase
in growth rate might be a consequence of the increase in the amplitude
of the u- and the T -disturbances. The v- and the w-velocity still behave
quite linearly in figure 6-5. A simple explanation for the behaviour of
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Figure 6-5: Plots of disturbances at R = 800, M = 0.2, at grid
cell with (xi, yj , zk) = (−6.36, 0.8821, 0.0), run (c). Amplitudes
are scaled with the initial global disturbance amplitude, ε =
0.005.
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the u-disturbance lies in the interaction with the anti-symmetric modes.
Since the u-disturbance is anti-symmetric itself for symmetric modes the
u-disturbance is initially small close to the attachment line, x = 0. How-
ever, for the anti-symmetric modes the u-disturbance is symmetric, and
thus for anti-symmetric modes the u-disturbance is unequal to zero close
to the attachment line. For the other velocity disturbances the situation
is just the opposite; close to the attachment line the symmetric com-
ponents are nearly constant, and the anti-symmetric components are
small. So, if an anti-symmetric field emerges in an initially symmetric
disturbance field, it will probably not affect the growth rate computed
from the time history of this field very much initially. Its total effect on
the shape of the initially symmetric disturbance field will be relatively
small close to the attachment-line compared to the case that a symmet-
ric field emerges in an initially anti-symmetric field. For this reason the
v- and the w-disturbances in figure 6-5 behave quite linearly. Accord-
ing to figure 6-5(d) the effect of the emergence of the anti-symmetric
mode is compensated in the disturbance equations by compressibility
and maybe also by the constant spectral components, such as in fig-
ure 6-4.

Three-dimensional iso-surface plots of the disturbances have been
considered. It turned out that the x-dependence of the solution resem-
bled that of the initial S1-mode for about 10 periods in time. That is,
the behaviour of u stays approximately linear in x, and v, w, ρ and T

stay approximately independent of x. As a consequence contour plots
of the solution in the yz-plane at a fixed value of z suffice for its visu-
alization. Next such contour plots of the disturbance components will
be considered. These plots have been made for each solution compo-
nent at t = 1.0, 2.0, 3.0, . . ., periods in time in order to appreciate
the evolution of the coherent structures in the flow. Only a limited
number of plots can be presented here, and we choose to focus on the
T -disturbance. Figure 6-6 shows contour plots of the T -disturbance at
3, 6, 10 and 20 periods in time. These contour plots of T show that
although the amplitude of the T -disturbance exhibits a strong growth,
the shape of the T -disturbance remains approximately the same in the
y-direction. This is also the case for the other disturbances. In addi-
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Figure 6-6: Contour plots of the T -disturbance at R = 800,
M = 0.2, x = −6.3636, run (c). (a), (b), (c) and (d) after 3, 6,
10 and 20 periods respectively.
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tion the period in time of the T -disturbance seems to remain constant in
these plots, which is also the case for the other disturbances. Iso-surface
plots, which have not been presented, show that after 3 periods the T -
disturbance is still very much independent of x. Gradually the solution
changes as a consequence of nonlinear interactions, and after 10 periods
the initial x-independence of the solution is partially lost. Since the T -
and the ρ-disturbance are closely connected through the state equation,
it is no surprise that the behaviour of the ρ-disturbance is similar to the
behaviour of the T -disturbance. It is expected that structurally involved
changes will arise in this flow if the nonlinear interactions become larger
and transition sets in.

If the solution of a direct numerical simulation is enforced to stay
symmetric, interaction between the initial symmetric S1-mode and anti-
symmetric modes can not take place. Therefore in that case the growth
rate is expected to behave quite differently from the growth rate shown
in figure 6-2. This hypothesis has been checked using a fine grid com-
putation, run (d), in which the solution is forced to stay symmetric. In
figure 6-7 the growth rate is shown of this simulation. Again the growth
rate first rapidly increases, and then the growth rate starts to decrease
very gradually. The difference with the computations involving gener-
ally shaped disturbances is that the strong increase in growth rate after
4 periods does not take place. This is expected based on the assump-
tion that the increase in growth rate is a consequence of the emerging
of an antisymmetric mode in run (c). Since this can not happen in
simulation (d) since in this computation the difference between both
simulations clearly illustrates the effects of mode-mode interactions.

It is interesting to consider the time history of the solution at a
single point, see figure 6-8. Compared to the general case in figure 6-
5 now all four solution components behave quite linearly. Analysis of
the velocity disturbances reveals that these perturbations grow at the
same rate. The large unbiased growth of the u- and the T -amplitude
is absent for the purely symmetric case. Again this is consistent with
emergence of an antisymmetric mode emerges in run (c), which can not
occur in run (d). The effects in the symmetric and general case that
arise from this difference at later times, i.e. the transitional and early
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Figure 6-7: Growth rate as function of time at R = 800, M =
0.2, symmetric modes only, run (d).
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Figure 6-8: Plots of disturbances at R = 800, M = 0.2, at
grid cell with (xi, yj , zk) = (14.286, 0.8739, 0.0), run (d), sym-
metric modes only. Amplitudes are scaled with the initial global
disturbance amplitude, ε = 0.005.
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turbulent regime deserve further attention and will clarify the mode-
mode interactions.

6.4 Concluding remarks

A fast computer code has been developed for the computation of nonlin-
ear stability characteristics of the compressible attachment-line bound-
ary layer. The computations use high-order finite-difference spatial dis-
cretization and implicit temporal discretization. In addition the compu-
tational xy-domain and boundary conditions are the same as for the lin-
ear computations of the initial perturbation. In the third direction, the
z-direction, periodic boundary conditions are prescribed. This code has
been validated in a number of ways. First it has been checked whether
the results from linear stability theory could be reproduced. Secondly,
the time accuracy and the efficiency of the implicit Crank-Nicolson
scheme have also been compared with an explicit Runge-Kutta method.
It was found that the implicit Crank-Nicolson scheme performed much
better than the explicit Runge-Kutta method, at time steps resulting in
comparable accuracy. Finally, long time simulations on fine grids were
compared with a coarse grid simulation. These simulations produced
similar results, thus establishing sufficient spatial resolution in order to
arrive at physically reliable results.

A numerical study of the initial stage of the transition of the com-
pressible attachment-line boundary layer has been conducted. It has
been found that, for general disturbances, the results start to deviate
significantly from linear stability theory as soon as the disturbance level
reaches about 1%. At this disturbance level the growth rate starts to in-
crease to a much higher value. After some more periods the growth rate
starts to decrease again. The behaviour of the u- and the T -disturbances
seems to be entirely responsible for the difference with linear theory.
However, when only symmetric modes are allowed in the simulations in-
stead of general perturbations, then this sudden increase of the growth
rate is absent. Therefore the interaction between symmetric and anti-
symmetric modes, is likely to be responsible for the sudden increase of
the growth rate in figure 6-2. The fact that the u-disturbance seems to
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be responsible for this sudden change of the growth rate and that the
v- and the w-disturbances seem to develop according to linear theory
over a longer period of time supports this as explained in the previous
section.

In the past no such nonlinear interactions between symmetric and
antisymmetric modes were found for two reasons. A number of re-
searchers used only symmetric modes in their simulations, e.g. Theofilis
(1998) and Hall and Malik (1986). Other researchers did use a general
model for the perturbations, but they used extremely small disturbance
amplitudes, e.g. Joslin (1995) and Spalart (1988). Spalart (1988) stud-
ied also turbulent incompressible attachment-line flow, but he did not
study the transition to turbulence.



Chapter 7

Conclusions and further
recommendations

In this final chapter some of the findings of the previous chapters are
gathered and put into perspective. These are followed by some recom-
mendations for future research. The recommendations and findings are
divided into two groups. Those related to the development of efficient
and flexible numerical algorithms and those related to the physical as-
pects of the attachment-line flow. These two issues will be dealt with
separately, starting with the numerical aspects which will be followed
by a discussion of some physical aspects.

7.1 Numerical aspects

A numerical approach has been developed to solve stability problems
from fluid dynamics. This approach is based on the conversion of the
stability problem into an eigenvalue problem. The partial differential
equations in the eigenvalue problem can subsequently be discretized re-
sulting in an algebraic eigenvalue problem. This algebraic eigenvalue
problem has been solved by a comparably new method, the JDPOL-
method for generalized polynomial eigenvalue problems. In order to
study nonlinear aspects of hydrodynamic stability a method has been
developed for the solution of the full three-dimensional compressible
Navier–Stokes equations in disturbance form. With this method direct
numerical simulations of the Navier–Stokes equations can be performed.

95
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Solutions of the eigenvalue problem have been used as initial fields in
these direct numerical simulations. In addition, the nonlinear and the
linear code have been strongly integrated such that differences in dis-
cretization, boundary conditions and interpolation errors were made as
small as possible.

A finite-difference method was selected for the discretization of the
partial differential equations in the linear and nonlinear stability prob-
lems. This finite-difference method allows for discretization with a user-
defined formal order of accuracy. The finite-difference method leads to
sparse systems to be solved for the solution of the eigenvalue problem.
The choice of the eigenvalue solver, the linear system solver and the
preconditioner have been adapted to this sparsity. Use has been made
of the user-defined accurate discretization method by computing some
matrices required in the solution processes with a lower formal accu-
racy. These matrices were used to compute the preconditioners for the
solution of the eigensystem and the direct numerical simulations. In
this way the lower formal order of accuracy results in a lower fill-in in
the sparse preconditioners which greatly improves the overall efficiency
of the computations. The formal order of accuracy is, however, deter-
mined by the high-order discretization of the system matrices required
for the solution of the eigensystem and the direct numerical simulations.

Eigenmodes can be used as initial fields in a direct numerical simu-
lation. Such simulations are useful to study the nonlinear behaviour of
the disturbances. However, as a result of the time-dependence and the
three-dimensionality in such computations the turn-around times tend
to be extremely long. For the setting which has been chosen in this the-
sis a direct numerical simulation takes typically one month on a single
R10000 processor of a 10-processor Silicon Graphics Power Challenge
system. Therefore days can be saved with relatively small efficiency
improvements. Here such an improvement has been made by using the
implicit Crack-Nicolson time discretization scheme instead of a conven-
tional explicit Runge-Kutta scheme. For our application the use of an
implicit time discretization scheme can reduce the computation time
by more than a factor 2.5. As a disadvantage much more memory was
required with the implicit scheme, i.e. about a factor 4 more.
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The numerical framework developed so far can be extended in many
ways. Therefore priorities have to be set based on for instance scientific
and industrial interests. The current code is highly object oriented and
therefore it is expected that extensions can be relatively easily added.
An extended version of the standard library of C++ is expected to be-
come more widely available and popular in the near future. In order
to increase the compatibility with other object oriented packages more
use of this library is recommended for future versions of the code. Such
versions can treat, for example non-similar base flows, more general and
possibly non-Cartesian geometries, and parallel solvers for the direct nu-
merical simulations. The current code has two important limitations,
that is to say that all computations have to be performed on Carte-
sian grids and that for the base flow only solvers in one dimension are
available. The extensions should be concerned with these limitations
and the elimination of them will facilitate the study of flows in complex
geometries. For instance, a coupling of the code with a finite-element
package would make the study of the transition of flows in more complex
geometries possible. It is expected that such studies will be more rele-
vant for industrial and commercial applications. In addition the speed
of the code for the direct numerical simulations needs attention. When
these simulations can be run faster it may be possible to perform pa-
rameter studies in the Reynolds number and the Mach number. Such
parameter studies are highly important for both scientific and engineer-
ing purposes. It is expected that computer hardware will be faster in
the future, but the software can be improved as well. One way to im-
prove the speed of the direct numerical simulations is to make the code
run in parallel. For the numerical methods chosen this is a challenging
task which has the interest of a large part of the numerical analysis
community.

7.2 Physical aspects

In chapter 4 and chapter 5 a general two-dimensional framework has
been used for the computation of the linear stability characteristics of
attachment-line flow. It has been shown in chapter 4 that there are other
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modes with nearly equal wave number and growth rate apart from the
essentially one-dimensional similarity mode. In chapter 5 the compu-
tations of chapter 4 have been extended to the compressible subsonic
case. It has been found that the structure of the spectrum is similar
for the incompressible and the subsonic case. For the subsonic case the
most unstable mode obeys the Görtler-Hämmerlin assumption. It has
also been found that in the subsonic case compressibility is stabilizing.
Moreover, an approximate one-dimensional model for all perturbation
eigenfunctions near the leading edge was proposed. This model may be
used to arrive at a general one-dimensional approximate eigenproblem
for the compressible attachment-line flow. With respect to the linear
stability of the attachment-line flow some interesting points deserve to
be considered in the future. As pointed out in the previous section these
are the stability characteristics of more realistic flows, for instance flows
in complicated geometries. A starting point can be the use of more
realistic, for instance non-symmetric, base flows. Also interesting from
the point of view of the aerodynamics community would be the stability
of supersonic attachment-line flow.

Finally, the nonlinear evolution of the most unstable, symmetric,
mode at M = 0.2 and R = 800 has been studied in chapter 6. As
indicated there the nonlinear evolution of this mode shows that at a
certain disturbance level anti-symmetric components enter into the so-
lution and strongly increase the growth rate of the u-disturbance. The
simulations restricting the solution to remain symmetric do not show
this strong increase of the growth rate. This is consistent with the lack
of success of previous attempts in finding an explanation for the ex-
perimentally observed subcritical instability using symmetric Görtler-
Hämmerlin modes only, see for example Theofilis (1998). In his con-
clusion Theofilis noted that different results may be obtained by us-
ing a three-dimensional computer code, which has been confirmed in
chapter 6. Combining the results of chapter 5 and 6, there may still
be a fruitful possibility for the study of the nonlinear stability of the
attachment-line boundary layer within a two-dimensional setting. Such
a model would use the generalized Görtler-Hämmerlin assumption for
eliminating the chordwise direction. Using this approach, first one-
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dimensional models should be derived for the approximate eigenvectors
proposed in (5-14)–(5-17). These equations should be solved by a suit-
able numerical method after which their solutions can be used as ini-
tial states in extended Görtler-Hämmerlin direct numerical simulations
in two dimensions. two-dimensional direct numerical simulations. The
equations involved in these two-dimensional computations can probably
be derived very much in the same way the one-dimensional eigenvalue
problems can be derived. With such an approach elaborate parameter
studies might be possible with presently available computer facilities
leading to a much better understanding of the transition into turbu-
lence of the laminar attachment-line boundary layer.
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Summary

Moving vehicles, such as submarines and airplanes, are surrounded by
a thin boundary layer in which the relative fluid velocity drops rapidly
to zero close to the solid walls of the vehicle. The transition of such
boundary layers from laminar into turbulent flow is an interesting phe-
nomenon. Moreover, a strong international interest in problems of sta-
bility and transition of wall-bounded shear layers exists in connection
with the design of many transport vehicles. In particular the stabil-
ity and transition in attachment-line boundary-layer flow which forms
e.g. near the leading edge of a wing is the central theme of this thesis.
This theme has been investigated by solving appropriate mathemati-
cal models based on the Navier-Stokes equations numerically. For this
purpose the attachment-line flow is considered as composed of a basic
boundary-layer flow and perturbations superimposed on it. The models
used consist of equations for the perturbations and the basic flow.

First a short introduction in hydrodynamic stability theory is pro-
vided, and an overview is given over the relevant literature regarding
the stability of attachment-line flow. Then a more detailed descrip-
tion of the attachment-line flow and a number of mathematical models
for the study of the stability of this flow are described. Subsequently
the numerical methods for solving the models used are described. The
results of computations involving the linear stability of incompressible
and compressible attachment-line flow are presented afterwards. These
calculations involve the solution of large sparse quadratic eigenvalue
problems. The solution of these eigenvalue problems consists of the
frequency, growth rate and the spatial structure of infinitesimal pertur-
bations superimposed on the basic flow. It is shown that compressibility
has a stabilizing effect on the attachment-line boundary layer. Also a
generalization of the Görtler-Hämmerlin model is proposed in which all,
two-dimensional, eigenvectors can be approximated using functions of
the normal coordinate only. Finally the focus is turned towards the
nonlinear stability of the compressible attachment-line boundary layer.
Direct numerical simulations of the Navier–Stokes equations in distur-
bance form have been performed.Except for periodicity in the spanwise
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direction no restrictions needed to be posed on the shape of the per-
turbations. On the other hand simulations have also been performed
where the solution was restricted to be symmetric with respect to the
attachment-line. A comparison was made between the evolution of these
symmetric disturbances and the case were no restriction on the shape of
the perturbations has been made. For general disturbances, it has been
found that the results start to deviate significantly from linear stability
theory for disturbance levels of about 1%. At these disturbance levels
the growth rate starts to increase to a much higher value. The behaviour
of the chordwise velocity and the temperature disturbances seems to be
entirely responsible for the deviation from linear theory. However, when
only symmetric modes are allowed in the simulations, the constructive
mode-mode interaction appears to be fully inhibited and the sudden in-
crease of the growth rate is absent. Therefore, the interaction between
symmetric and antisymmetric modes is likely to be responsible for the
sudden increase of the growth rate and possibly related to subcritical
transition.
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Samenvatting

Voertuigen, zoals onderzeeërs en vliegtuigen, zijn omringd door een
dunne grenslaag waarin the relatieve vloeistofsnelheid snel naar nul
nadert dichtbij de wand. De overgang van dit soort grenslagen van lami-
nair naar turbulent is een interessant verschijnsel. Bovendien bestaat er
een grote internationale interesse in problemen aangaande de stabiliteit
van door wanden begrensde grenslagen in verband met het ontwerp van
voertuigen. In het bijzonder is het centrale thema van dit proefschrift
de stabiliteit en transitie naar turbulentie van grenslaagstromingen die
tegen een voorrand stromen. Dit onderwerp is onderzocht door middel
van het numeriek oplossen van wiskundige modellen gebaseerd op de
Navier-Stokes vergelijkingen. Hiervoor is de totale stroming gedacht als
bestaande uit een basis grenslaagstroming en verstoringen daarop. De
gebruikte modellen bestaan uit vergelijkingen voor de verstoringen en
de basisstroming.

Het proefschrift begint met een korte inleiding in hydrodynamische
stabiliteitstheorie, alsmede een overzicht over de relevante literatuur
m.b.t. de stabiliteit van de onderzochte stromingen. Dan wordt er een
gedetailleerdere beschrijving van de voorrandstroming gegeven evenals
een aantal wiskundige modellen voor het bestuderen van de stabiliteit
van deze stroming. Daarna worden de numerieke methoden voor het
doen van berekeningen gebaseerd op deze modellen beschreven. De re-
sultaten van de berekeningen m.b.t. de lineaire stabiliteit van vloeistof-
en gasstromingen worden vervolgens gepresenteerd. Deze berekeningen
brengen het oplossen van grote ijle kwadratische eigenwaarde problemen
met zich mee. De oplossing van deze eigenwaarde problemen bestaat
uit de frequentie, groeisnelheid en de ruimtelijke structuur van oneindig
kleine verstoringen op de basisstroming. De resultaten laten zien dat
compressibiliteit een stabilizerende invloed heeft op de voorrandstro-
ming. Verder wordt er een generalisatie van het Görtler-Hämmerlin
model voorgesteld waarin alle, twee-dimensionale, eigenvectoren be-
naderd kunnen worden met functies alleen van de coordinaat loodrecht
op de wand. Tenslotte wordt er gekeken naar de niet-lineaire stabiliteit
van de compressibele voorrandstroming. Dit gebeurt met behulp van
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directe numerieke simulaties van de Navier-Stokes vergelijkingen in ver-
storingsvorm. Behalve periodiciteit in de richting langs de voorrand
hoefden zo geen beperkingen opgelegd te worden aan de vorm van de
verstoringen. Bovendien was het mogelijk om alleen met symmetrische
verstoringen simulaties te doen. Een vergelijking is gemaakt tussen de
evolutie van deze symmetrische verstoringen en het geval zonder deze
beperking op de vorm van de verstoringen. Voor algemene verstorin-
gen is er gevonden dat de resultaten significant beginnen te verschillen
van die van lineaire stabiliteitstheorie wanneer de amplitude van de
verstoringen ongeveer één procent is van de basisstroming. Bij deze
amplitude stijgt de groeisnelheid opeens naar een veel hogere waarde.
Het gedrag van de snelheid stroomafwaarts over de vleugel en van de
temperatuur lijkt geheel verantwoordelijk te zijn voor het verschil met
lineaire stabiliteitstheorie. Echter, wanneer alleen symmetrische modes
toegestaan zijn in de simulaties, blijft een zichzelf versterkende mode-
mode interactie uit evenals een plotselinge stijging van de groeisnelheid
van de verstoringen. Daarom is de interactie tussen symmetrische en
anti-symmetrische modes waarschijnlijk de oorzaak van de plotselinge
stijging van de groeisnelheid en mogelijk ook van het verschijnsel sub-
kritische transitie.
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Nawoord

Dit proefschrift is het resultaat van vier jaar onderzoek in de stro-
mingsleer binnen de groep van prof. Zandbergen. Het was ofwel hollen
ofwel stilstaan. Aan het eind van de vier jaar was het vooral het eerste
en in het begin waren er veel periodes met stilstaan. Juist de peri-
odes met stilstaan kunnen heel zwaar zijn, en dan is het belangrijk
om mensen om je heen te hebben die je motiveren, afleiding geven, je
de kans geven om even ergens anders aan te denken. Het is niet te
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